Set of tuples expansion by example with reliability

Author:

Er Ngurah Agus Sanjaya,Ba Mouhamadou Lamine,Abdessalem Talel,Bressan Stéphane

Abstract

Purpose This paper aims to focus on the design of algorithms and techniques for an effective set expansion. A tool that finds and extracts candidate sets of tuples from the World Wide Web was designed and implemented. For instance, when a given user provides <Indonesia, Jakarta, Indonesian Rupiah>, <China, Beijing, Yuan Renminbi>, <Canada, Ottawa, Canadian Dollar> as seeds, our system returns tuples composed of countries with their corresponding capital cities and currency names constructed from content extracted from Web pages retrieved. Design/methodology/approach The seeds are used to query a search engine and to retrieve relevant Web pages. The seeds are also used to infer wrappers from the retrieved pages. The wrappers, in turn, are used to extract candidates. The Web pages, wrappers, seeds and candidates, as well as their relationships, are vertices and edges of a heterogeneous graph. Several options for ranking candidates from PageRank to truth finding algorithms were evaluated and compared. Remarkably, all vertices are ranked, thus providing an integrated approach to not only answer direct set expansion questions but also find the most relevant pages to expand a given set of seeds. Findings The experimental results show that leveraging the truth finding algorithm can indeed improve the level of confidence in the extracted candidates and the sources. Originality/value Current approaches on set expansion mostly support sets of atomic data expansion. This idea can be extended to the sets of tuples and extract relation instances from the Web given a handful set of tuple seeds. A truth finding algorithm is also incorporated into the approach and it is shown that it can improve the confidence level in the ranking of both candidates and sources in set of tuples expansion.

Publisher

Emerald

Subject

Computer Networks and Communications,Information Systems

Reference48 articles.

1. Objectrunner: lightweight, targeted extraction and querying of structured web data;Proceedings of the VLDB Endowment (PVLDB),2010

2. VERA: a platform for veracity estimation over web data,2016

3. Truth finding with attribute partitioning,2015

4. Data veracity estimation with ensembling truth discovery methods,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Harnessing Truth Discovery Algorithms On The Topic Labelling Problem;Proceedings of the 20th International Conference on Information Integration and Web-based Applications & Services;2018-11-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3