Detecting and presenting welcome-news for tourists from user reviews

Author:

Nadamoto Akiyo,Sakai Keigo

Abstract

Purpose Recently, people usually use the internet to obtain travel information, when they plan their travel. They especially want to obtain sightseeing spot information from reviews, but there are huge amounts of reviews of sightseeing spots. Users therefore cannot obtain important information from the reviews easily. As described herein, this paper aims to propose a system that automatically extracts and presents welcome news for sightseeing spots from reviews. This proposed Welcome-news is a “useful information” and “unexpected information” related to travel. Design/methodology/approach The flow for extracting Welcome-news from reviews is simple: A user inputs a sightseeing spot about which to get information; the system obtains reviews of the sightseeing spot and divides each sentence into reviews; the system extracts sentences including Welcome-news keyword(s), and the sentences become useful information; the system extracts unexpected information from useful information based on clustering, and it becomes Welcome-news; and the system presents all Welcome-news to the user. Findings This paper reports three findings: extraction of useful information for sightseeing spots based on Welcome-news keywords extracted by our experiment and using support vector machine (SVM); extraction of unexpected information for sightseeing spots by clustering; and automatic presentation of Welcome-news. Originality/value Numerous studies have extracted information from reviews based on some keywords. This proposed extraction of Welcome-news for travel not only uses keywords but also clusters based on topics. Furthermore, the proposed keywords include general keywords and unique keywords. The former appears for all kinds of sightseeing spots. The latter appears only for sightseeing spot. The authors extracted general keywords manually, and unique keywords using SVM.

Publisher

Emerald

Subject

Computer Networks and Communications,Information Systems

Reference18 articles.

1. Mining the peanut gallery: opinion extraction and semantic classification of product reviews,2003

2. Clustering for closely similar recipes to extract spam recipes in user-generated recipe sites,2015

3. Tip information from social media based on topic detection;International Journal of Web Information Systems,2013

4. Mining and summarizing customer reviews,2004

5. Twitter power: tweets as electronic word of mouth;Journal of the American Society for Information Science and Technology,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3