Innovating in data-driven production environments: simulation analysis of Net-CONWIP priority rule

Author:

Diaz RafaelORCID,Ardalan Ali

Abstract

PurposeMotivated by recent research indicating that the operational performance of an enterprise can be enhanced by building a supporting data-driven environment in which to operate, this paper presents a simulation framework that enables an examination of the effects of applying smart manufacturing principles to conventional production systems, intending to transition to digital platforms.Design/methodology/approachTo investigate the extent to which conventional production systems can be transformed into novel data-driven environments, the well-known constant work-in-process (CONWIP) production systems and considered production sequencing assignments in flowshops were studied. As a result, a novel data-driven priority heuristic, Net-CONWIP was designed and studied, based on the ability to collect real-time information about customer demand and work-in-process inventory, which was applied as part of a distributed and decentralised production sequencing analysis. Application of heuristics like the Net-CONWIP is only possible through the ability to collect and use real-time data offered by a data-driven system. A four-stage application framework to assist practitioners in applying the proposed model was created.FindingsTo assess the robustness of the Net-CONWIP heuristic under the simultaneous effects of different levels of demand, its different levels of variability and the presence of bottlenecks, the performance of Net-CONWIP with conventional CONWIP systems that use first come, first served priority rule was compared. The results show that the Net-CONWIP priority rule significantly reduced customer wait time in all cases relative to FCFS.Originality/valuePrevious research suggests there is considerable value in creating data-driven environments. This study provides a simulation framework that guides the construction of a digital transformation environment. The suggested framework facilitates the inclusion and analysis of relevant smart manufacturing principles in production systems and enables the design and testing of new heuristics that employ real-time data to improve operational performance. An approach that can guide the structuring of data-driven environments in production systems is currently lacking. This paper bridges this gap by proposing a framework to facilitate the design of digital transformation activities, explore their impact on production systems and improve their operational performance.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications,Industrial relations,Management Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3