Abstract
PurposeAutomated crop prediction is needed for the following reasons: First, agricultural yields were decided by a farmer's ability to work in a certain field and with a particular crop previously. They were not always able to predict the crop and its yield solely on that idea alone. Second, seed firms frequently monitor how well new plant varieties would grow in certain settings. Third, predicting agricultural production is critical for solving emerging food security concerns, especially in the face of global climate change. Accurate production forecasts not only assist farmers in making informed economic and management decisions but they also aid in the prevention of famine. This results in farming systems’ efficiency and productivity gains, as well as reduced risk from environmental factors.Design/methodology/approachThis research paper proposes a machine learning technique for effective autonomous crop and yield prediction, which makes use of solution encoding to create solutions randomly, and then for every generated solution, fitness is evaluated to meet highest accuracy. Major focus of the proposed work is to optimize the weight parameter in the input data. The algorithm continues until the optimal agent or optimal weight is selected, which contributes to maximum accuracy in automated crop prediction.FindingsPerformance of the proposed work is compared with different existing algorithms, such as Random Forest, support vector machine (SVM) and artificial neural network (ANN). The proposed method support vector neural network (SVNN) with gravitational search agent (GSA) is analysed based on different performance metrics, such as accuracy, sensitivity, specificity, CPU memory usage and training time, and maximum performance is determined.Research limitations/implicationsRather than real-time data collected by Internet of Things (IoT) devices, this research focuses solely on historical data; the proposed work does not impose IoT-based smart farming, which enhances the overall agriculture system by monitoring the field in real time. The present study only predicts the sort of crop to sow not crop production.Originality/valueThe paper proposes a novel optimization algorithm, which is based on the law of gravity and mass interactions. The search agents in the proposed algorithm are a cluster of weights that interact with one another using Newtonian gravity and motion principles. A comparison was made between the suggested method and various existing strategies. The obtained results confirm the high-performance in solving diverse nonlinear functions.
Reference21 articles.
1. Smart weather acquisition, analysis and alert system;Annals of the Romanian Society for Cell Biology,2021
2. Crop recommendation and yield estimation using machine learning,2022
3. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review;Computers and Electronics in Agriculture,2018
4. An artificial neural network approach for agricultural crop yield prediction based on various parameters;International Journal of Advanced Research in Electronics and Communication Engineering,2015
5. A reinforced random forest model for enhanced crop yield prediction by integrating agrarian parameters;Journal of Ambient Intelligence and Humanized Computing,2021
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献