GSA-based support vector neural network: a machine learning approach for crop prediction to provision sustainable farming

Author:

Ashwitha A.ORCID,Latha C.A.

Abstract

PurposeAutomated crop prediction is needed for the following reasons: First, agricultural yields were decided by a farmer's ability to work in a certain field and with a particular crop previously. They were not always able to predict the crop and its yield solely on that idea alone. Second, seed firms frequently monitor how well new plant varieties would grow in certain settings. Third, predicting agricultural production is critical for solving emerging food security concerns, especially in the face of global climate change. Accurate production forecasts not only assist farmers in making informed economic and management decisions but they also aid in the prevention of famine. This results in farming systems’ efficiency and productivity gains, as well as reduced risk from environmental factors.Design/methodology/approachThis research paper proposes a machine learning technique for effective autonomous crop and yield prediction, which makes use of solution encoding to create solutions randomly, and then for every generated solution, fitness is evaluated to meet highest accuracy. Major focus of the proposed work is to optimize the weight parameter in the input data. The algorithm continues until the optimal agent or optimal weight is selected, which contributes to maximum accuracy in automated crop prediction.FindingsPerformance of the proposed work is compared with different existing algorithms, such as Random Forest, support vector machine (SVM) and artificial neural network (ANN). The proposed method support vector neural network (SVNN) with gravitational search agent (GSA) is analysed based on different performance metrics, such as accuracy, sensitivity, specificity, CPU memory usage and training time, and maximum performance is determined.Research limitations/implicationsRather than real-time data collected by Internet of Things (IoT) devices, this research focuses solely on historical data; the proposed work does not impose IoT-based smart farming, which enhances the overall agriculture system by monitoring the field in real time. The present study only predicts the sort of crop to sow not crop production.Originality/valueThe paper proposes a novel optimization algorithm, which is based on the law of gravity and mass interactions. The search agents in the proposed algorithm are a cluster of weights that interact with one another using Newtonian gravity and motion principles. A comparison was made between the suggested method and various existing strategies. The obtained results confirm the high-performance in solving diverse nonlinear functions.

Publisher

Emerald

Subject

General Computer Science

Reference21 articles.

1. Smart weather acquisition, analysis and alert system;Annals of the Romanian Society for Cell Biology,2021

2. Crop recommendation and yield estimation using machine learning,2022

3. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review;Computers and Electronics in Agriculture,2018

4. An artificial neural network approach for agricultural crop yield prediction based on various parameters;International Journal of Advanced Research in Electronics and Communication Engineering,2015

5. A reinforced random forest model for enhanced crop yield prediction by integrating agrarian parameters;Journal of Ambient Intelligence and Humanized Computing,2021

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3