Author:
Qi Ting,Zhu Haihong,Zeng Xiaoyan,Yin Jie
Abstract
Purpose
It is a crucial issue to eliminate cracks for selective laser melting (SLM) 7xxx series aluminum alloy. This paper aims to study the effect of silicon content on the cracking behavior and the mechanism of eliminating crack of SLMed Al7050 alloy.
Design/methodology/approach
Six different silicon contents were added to the Al7050 powder. The crack density and crack count measuring from optical micrographs were utilized to judge the cracking susceptibility. The low melting phases analyzing from Jmatpro and the microstructure observing by EPMA and SEM were used to discuss the mechanism of eliminating the crack.
Findings
The cracking susceptibility of SLMed Al7050 alloy decreases with the increase of adding silicon content. When adding silicon, two new low-melting phases appeared: Mg2Si and Al5Cu2Mg8Si6. These low-melting phases offer much liquid feeding along the grain boundary and decrease the cracking susceptibility. Moreover, the grains are obviously refined after adding silicon. The fine grain can increase the total surface area of the grain boundary, which can reinforce the matrix and decrease the cracking susceptibility. High silicon content results in more low-melting phases and fine grains, which decreases the cracking susceptibility.
Originality/value
The investigation results can help to obtain crack-free SLMed Al7050 parts and deep knowledge on eliminating cracking mechanism of high-strength aluminum alloy fabricated by SLM.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献