A systematic bibliometric analysis of studies dealing with fuel-related e-nose applications

Author:

Vidigal Igor Gomes,de Melo Mariana Pereira,Siqueira Adriano Francisco,Giordani Domingos Sávio,Romão Érica Leonor,dos Santos Eduardo Ferro,Ferreira Ana Lucia Gabas

Abstract

PurposeThis study aims to describe a bibliometric analysis of recent articles addressing the applications of e- noses with particular emphasis on those dealing with fuel-related products. Documents covering the general area of e-nose research and published between 1975 and 2021 were retrieved from the Web of Science database, and peer-reviewed articles were selected and appraised according to specific descriptors and criteria.Design/methodology/approachAnalyses were performed by mapping the knowledge domain using the software tools VOSviewer and RStudio. It was possible to identify the countries, research organizations, authors and disciplines that were most prolific in the area, together with the most cited articles and the most frequent keywords. A total of 3,921 articles published in peer-reviewed journals were initially retrieved but only 47 (1.19%) described fuel-related e-nose applications with original articles published in indexed journals. However, this number was reduced to 38 (0.96%) articles strictly related to the target subject.FindingsRigorous appraisal of these documents yielded 22 articles that could be classified into two groups, those aimed at predicting the values of key parameters and those dealing with the discrimination of samples. Most of these 22 selected articles (68.2%) were published between 2017 and 2021, but little evidence was apparent of international collaboration between researchers and institutions currently working on this topic. The strategy of switching energy systems away from fossil fuels towards low-carbon renewable technologies that has been adopted by many countries will generate substantial research opportunities in the prediction, discrimination and quantification of volatiles in biofuels using e-nose.Research limitations/implicationsIt is important to highlight that the greatest difficulty in using the e-nose is the interpretation of the data generated by the equipment; most studies have so far used the maximum value of the electrical resistance signal of each e-nose sensor as the only data provided by this sensor; however, from 2019 onwards, some works began to consider the entire electrical resistance curve as a data source, extracting more information from it.Originality/valueThis study opens a new and promising way for the effective use of e-nose as a fuel analysis instrument, as low-cost sensors can be developed for use with the new data analysis methodology, enabling the production of portable, cheaper and more reliable equipment.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3