A temperature-insensitive FBG acceleration sensor with sinusoid-shaped curved beams

Author:

Qiu Zhongchao,Mu Ruwang,Zhang Yuzi,Li Yanan,Teng Yuntian,Hong Li

Abstract

Purpose This study aims to solve the problem of temperature cross sensitivity of fiber Bragg grating in structural health monitoring, proposing a novel acceleration sensor based on strain chirp effect which is insensitive to temperature. Design/methodology/approach A kind of M-shaped double cantilever beam structure is developed. The fiber grating is pasted in the gradient strain region of the beam, and the chirp effect is produced under the action of non-uniform stress, and then the change of acceleration is converted into the change of reflection bandwidth to demodulate and eliminate the temperature interference. Through theoretical analysis, simulation and experimental verification with rectangular beam sensor. Findings The results show that the sinusoidal curvature beam sensor is insensitive to the change of temperature and is more likely to produce chirp effect. The sensitivity is about 317 pm/g, and the natural frequency is 56 Hz. Originality/value This paper fulfils an insensitive to temperature changes sensor which has effectively solved the temperature cross-sensitivity problem in building structure health monitoring.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference14 articles.

1. Medium-high frequency FBG accelerometer with integrative matrix structure;Applied Optics,2015

2. Low-cost interrogation technique for dynamic measurements with FBG-based devices;Sensors,2017

3. A review of railway infrastructure monitoring using fiber optic sensors;Sensors and Actuators A: Physical,2020

4. Photosensitivity in optical fiber waveguides: application to reflection filter fabrication;Applied Physics Letters,2018

5. Sensitivity improvement of a new structure crack meter with angular adjustment;Measurement and Control,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3