Soil moisture regimes in Mexico in a global 1.5°C warming scenario

Author:

Gomez Diaz Jesus David,Monterroso Alejandro I.,Ruiz Patricia,Lechuga Lizeth M.,Álvarez Ana Cecilia Conde,Asensio Carlos

Abstract

Purpose This study aims to present the climate change effect on soil moisture regimes in Mexico in a global 1.5°C warming scenario. Design/methodology/approach The soil moisture regimes were determined using the Newhall simulation model with the database of mean monthly precipitation and temperature at a scale of 1: 250,000 for the current scenario and with the climate change scenarios associated with a mean global temperature increase of 1.5°C, considering two Representative Concentration Pathways, 4.5 and 8.5 W/m2 and three general models of atmospheric circulation, namely, GFDL, HADGEM and MPI. The different vegetation types of the country were related to the soil moisture regimes for current conditions and for climate change. Findings According to the HADGEM and MPI models, almost the entire country is predicted to undergo a considerable increase in soil moisture deficit, and part of the areas of each moisture regime will shift to the next drier regime. The GFDL model also predicts this trend but at smaller proportions. Originality/value The changes in soil moisture at the regional scale that reveal the impacts of climate change and indicate where these changes will occur are important elements of the knowledge concerning the vulnerability of soils to climate change. New cartography is available in Mexico.

Publisher

Emerald

Subject

Management, Monitoring, Policy and Law,Development,Geography, Planning and Development,Global and Planetary Change

Reference47 articles.

1. The impacts of climate change across the globe: a multi-sectoral assessment;Climate Change,2016

2. Study on the effectiveness of an agricultural technique based on aeolian deposition, in a semiarid environment;Environmental Engineering and Management Journal,2015

3. Soil and climate change;Journal of Soils and Sediments,2005

4. Use of physically based models to evaluate USDA soil moisture classes;Soil Science of Society American Journal,2011

5. Functional shifts of grassland soil communities in response to soil warming;Soil Biology and Biochemistry,2009

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3