Accuracy enhancement of measurand estimate on the base of additive combined measurements

Author:

Ho Minh Dai,Muravyov Sergey V.

Abstract

Purpose The paper aims to develop a method for improving the accuracy of smart sensors (deemed as digital measuring instruments) by organizing combined measurements and processing their results by the parametric adjustment method at heterogeneous dispersion of the random error of the applied regression model. Design/methodology/approach When carrying out combined measurements, the problem of joint processing of measurement results of functionally related quantities must be solved. The function type can be known in advance or obtained experimentally. The number of combined measurements exceeds the number of unknown measured quantities. The redundant measurements can improve the accuracy of estimates of measured values but lead to inconsistency of the measurement results. The problem of inconsistency is solved by the parametric adjustment method, which is rather widely used mainly in the field of geodetic measurements, wherein the parametric equations are linear and the measured quantities are additive. Findings The proposed method allows to reduce the uncertainty of type B of a measurement result, caused by the maximum permissible error of a digital measuring instrument, by 1.2–4 times in comparison with the direct estimation method. Originality/value A compact description of the parametric adjustment method in matrix form is given. Recommendations are given on shaping a sensitivity matrix of functions for the proposed method. The geometric interpretation of the proposed method is considered. The results of the proposed method experimental testing are given when evaluating resistance values.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference23 articles.

1. Variances, covariances and restraints in mass metrology;Metrologia,1990

2. JCGM 100:2008, ‘Guide to the expression of uncertainty in measurement;BIPM;BIPM,2008

3. A technique for large mass and balance calibration,2000

4. A combinatorial technique for weighbridge verification;OIML Bulletin,2002

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3