NO2 gas sensing properties of bilayer graphene by CVD method

Author:

Li Hui,Zhang Zengwen,Fang Ruiyang,Gao Zhihui,He Wei

Abstract

Purpose The authors designed those experiments to test the sensitivity of graphene when it is exposed to NO2 gas, to find a way to decrease the recovery time of graphene and to find the difference effect between monolayer and bilayer graphene in the experiments. Design/methodology/approach The authors transferred graphene from film on Cu foil to NO2 sensor sample and measured the resistances of on monolayer and bilayer graphene when they were exposed to NO2 gas under different concentration; then, the authors obtained the results. Findings The results show that monolayer graphene exhibits a linear response when the NO2 concentration is below 20 ppm. But the monolayer graphene will not be so sensitive to NO2 gas when the concentration continues to reduce. The desorption time of monolayer graphene is longer when compared with bilayer graphene. It shows faster recovery time and higher response of bilayer graphene under low NO2 concentration. And the limit detectable NO2 concentration of bilayer graphene is 50 ppb. Desorption time of bilayer graphene is shortened to below 20 s under UV light. Originality/value The authors found a reliable way to decrease the recovery time of graphene when it is exposed NO2 gas and got the concrete data.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference16 articles.

1. Bilayer graphene application on NO2 sensor modelling;Journal of Nanomaterials,2014

2. Bilayer graphene application on NO2 sensor modelling;Journal of Nanomaterials,2014

3. The electronic properties of bilayer graphene;Reports on Progress in Physics,2013

4. A semi-analytical model of bilayer graphene field effect transistor;IEEE Transactions on Electron Devices,2009

5. Probing single and bilayer graphene field effect transistors by raman spectroscopy;Modern Physics Letters B,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3