Recognizing human concurrent activities using wearable sensors: a statistical modeling approach based on parallel HMM

Author:

Wang Zhelong,Chen Ye

Abstract

Purpose In sensor-based activity recognition, most of the previous studies focused on single activities such as body posture, ambulation and simple daily activities. Few works have been done to analyze complex concurrent activities. The purpose of this paper is to use a statistical modeling approach to classify them. Design/methodology/approach In this study, the recognition problem of concurrent activities is explored with the framework of parallel hidden Markov model (PHMM), where two basic HMMs are used to model the upper limb movements and lower limb states, respectively. Statistical time-domain and frequency-domain features are extracted, and then processed by the principal component analysis method for classification. To recognize specific concurrent activities, PHMM merges the information (by combining probabilities) from both channels to make the final decision. Findings Four studies are investigated to validate the effectiveness of the proposed method. The results show that PHMM can classify 12 daily concurrent activities with an average recognition rate of 93.2 per cent, which is superior to regular HMM and several single-frame classification approaches. Originality/value A statistical modeling approach based on PHMM is investigated, and it proved to be effective in concurrent activity recognition. This might provide more accurate feedback on people’s behaviors. Practical implications The research may be significant in the field of pervasive healthcare, supporting a variety of practical applications such as elderly care, ambient assisted living and remote monitoring.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3