Author:
Pourmahmoud Jafar,Gholam Azad Maedeh
Abstract
Purpose
The purpose of this paper is to propose the data envelopment analysis (DEA) model that can be used as binary-valued data. Often the basic DEA models were developed by assuming that all of the data are non-negative. However, there are situations where all data are binary. As an example, the information on many diseases in health care is binary data. The existence of binary data in traditional DEA models may change the behavior of the production possibility set (PPS). This study defines a binary summation operator, expresses the modified principles and introduces the extracted PPS of axioms. Furthermore, this study proposes a binary integer programming of DEA (BIP-DEA) for assessing the efficiency scores to use as an alternate tool in prediction.
Design/methodology/approach
In this study, the extracted PPS of modified axioms and the BIP-DEA model for assessing the efficiency score is proposed.
Findings
The binary integer model was proposed to eliminate the challenges of the binary-value data in DEA.
Originality/value
The importance of the proposed model for many fields including the health-care industry is that it can predict the occurrence or non-occurrence of the events, using binary data. This model has been applied to evaluate the most important risk factors for stroke disease and mechanical disorders. The targets set by this model can help to diagnose earlier the disease and increase the patients’ chances of recovery.
Subject
Management Science and Operations Research,Strategy and Management,General Decision Sciences
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献