Estimating left behind patterns in congested metro systems: a Bayesian model

Author:

Yu Chao,Li Haiying,Xu Xinyue,Sun Qi

Abstract

Purpose During rush hours, many passengers find it difficult to board the first train due to the insufficient capacity of metro vehicles, namely, left behind phenomenon. In this paper, a data-driven approach is presented to estimate left-behind patterns using automatic fare collection (AFC) data and train timetable data. Design/methodology/approach First, a data preprocessing method is introduced to obtain the waiting time of passengers at the target station. Second, a hierarchical Bayesian (HB) model is proposed to describe the left behind phenomenon, in which the waiting time is expressed as a Gaussian mixture model. Then a sampling algorithm based on Markov Chain Monte Carlo (MCMC) is developed to estimate the parameters in the model. Third, a case of Beijing metro system is taken as an application of the proposed method. Findings The comparison result shows that the proposed method performs better in estimating left behind patterns than the existing Maximum Likelihood Estimation. Finally, three main reasons for left behind phenomenon are summarized to make relevant strategies for metro managers. Originality/value First, an HB model is constructed to describe the left behind phenomenon in a target station and in the target direction on the basis of AFC data and train timetable data. Second, a MCMC-based sampling method Metropolis–Hasting algorithm is proposed to estimate the model parameters and obtain the quantitative results of left behind patterns. Third, a case of Beijing metro is presented as an application to test the applicability and accuracy of the proposed method.

Publisher

Emerald

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic inference for left behind probabilities on congested metro routes;Transportation Planning and Technology;2024-03-25

2. Spatial and Temporal Distribution of Passenger Flow on Urban Rail Transit Under Train Failure Scenarios;Lecture Notes in Electrical Engineering;2024

3. Facial Expression Recognition Algorithm Based on Multi-source Information Fusion;The Proceedings of the 5th International Conference on Energy Storage and Intelligent Vehicles (ICEIV 2022);2023

4. Inferring unable-to-board commuters for overcrowded buses using smart card data;Transportation;2022-11-23

5. A Novel Approach for Analyzing Passengers’ Train Choice Behavior in Urban Rail Transit System;Proceedings of the 5th International Conference on Electrical Engineering and Information Technologies for Rail Transportation (EITRT) 2021;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3