Two decades of financial statement fraud detection literature review; combination of bibliometric analysis and topic modeling approach

Author:

Soltani Milad,Kythreotis Alexios,Roshanpoor Arash

Abstract

Purpose The emergence of machine learning has opened a new way for researchers. It allows them to supplement the traditional manual methods for conducting a literature review and turning it into smart literature. This study aims to present a framework for incorporating machine learning into financial statement fraud (FSF) literature analysis. This framework facilitates the analysis of a large amount of literature to show the trend of the field and identify the most productive authors, journals and potential areas for future research. Design/methodology/approach In this study, a framework was introduced that merges bibliometric analysis techniques such as word frequency, co-word analysis and coauthorship analysis with the Latent Dirichlet Allocation topic modeling approach. This framework was used to uncover subtopics from 20 years of financial fraud research articles. Furthermore, the hierarchical clustering method was used on selected subtopics to demonstrate the primary contexts in the literature on FSF. Findings This study has contributed to the literature in two ways. First, this study has determined the top journals, articles, countries and keywords based on various bibliometric metrics. Second, using topic modeling and then hierarchy clustering, this study demonstrates the four primary contexts in FSF detection. Research limitations/implications In this study, the authors tried to comprehensively view the studies related to financial fraud conducted over two decades. However, this research has limitations that can be an opportunity for future researchers. The first limitation is due to language bias. This study has focused on English language articles, so it is suggested that other researchers consider other languages as well. The second limitation is caused by citation bias. In this study, the authors tried to show the top articles based on the citation criteria. However, judging based on citation alone can be misleading. Therefore, this study suggests that the researchers consider other measures to check the citation quality and assess the studies’ precision by applying meta-analysis. Originality/value Despite the popularity of bibliometric analysis and topic modeling, there have been limited efforts to use machine learning for literature review. This novel approach of using hierarchical clustering on topic modeling results enable us to uncover four primary contexts. Furthermore, this method allowed us to show the keywords of each context and highlight significant articles within each context.

Publisher

Emerald

Subject

Law,General Economics, Econometrics and Finance

Reference47 articles.

1. Bibliometrics: tracking research impact by selecting the appropriate metrics;Asian Journal of Andrology,2016

2. Aicpa.org (2020), “Blockchain versus financial statement fraud”, (online), available at: www.aicpa.org/professional-insights/download/blockchain-versus-financial-statement-fraud (accessed 17 August 2022).

3. Research progress, trends, and updates on anaerobic digestion technology: a bibliometric analysis;Journal of Cleaner Production,2022

4. Intelligent fraud detection in financial statements using machine learning and data mining: a systematic literature review;IEEE Access,2021

5. Smart literature review: a practical topic modeling approach to exploratory literature review;Journal of Big Data,2019

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3