Preparation and selectivity evaluation of grafted temperature-responsive imprinted composite polyvinylidene fluoride resin membranes for selective adsorption of ReO4−

Author:

Zhang Jun,Ou Xiaojian,Li Lin,Chen Qianqian,Zhang Zifan,Huo Ting,Lin Xiaoyu,Niu Fangfang,Zhao Shengyuan,We Fang,Li Hui,Liu Chunli,Chen Zhenbin,Lu Sujun,Zhang Peng,Zhu Jinian

Abstract

Purpose A novel grafted temperature-responsive ReO4 Imprinted composite membranes (Re-ICMs) was successfully prepared by using polyvinylidene fluoride (PVDF) resin membranes as substrates, this study aimed to separate and purify ReO effectively. Design/methodology/approach Re-ICMs were synthesized by PVDF resin membranes as the substrate, acrylic acid (AA), acrylamide (AM), ethylene glycol dimethacrylate (EGDMA) were functional monomers. The morphology and structure of Re-ICMs were characterized by scanning electron microscope and Fourier transform infrared spectroscopy. Findings The maximum adsorption capacity toward ReO4 was 0.1,163 mmol/g and the separation decree had relation to MnO4 was 19.3. The optimal operation conditions were studied detailedly and the results as follows: the molar ratios of AA, AM, EGDMA, ascorbic acid, NH4ReO4, were 0.8, 0.96, 0.02, 0.003 and 0.006. The optimal time and temperature were 20 h and 40°C, respectively. The Langmuir and pseudo-second-order models were fit these adsorption characteristics well. Practical implications Rhenium (Re) is mainly used to chemical petroleum and make superalloys for jet engine parts. This study was representing a technology in separate and purify of Re, which provided a method for the development of the petroleum and aviation industry. Originality/value This contribution provided a novel method to separate ReO4 from MnO4. The maximum adsorption capacity was 0.1163 mmol/g at 35°C and the adsorption equilibrium time was within 2 h. Meanwhile, the adsorption selectivity rate ReO4/MnO4 was 19.3 and the desorption rate was 78.3%. Controlling the adsorption experiment at 35°C and desorption experiment at 25°C in aqueous solution, it could remain 61.3% of the initial adsorption capacity with the adsorption selectivity rate of 13.3 by 10 adsorption/desorption cycles, a slight decrease, varied from 78.3% to 65.3%, in desorption rate was observed.

Publisher

Emerald

Subject

Materials Chemistry,Surfaces, Coatings and Films

Reference20 articles.

1. Formation, characterization and computational studies of Lumazine Schiff base rhenium(III) and-(V) complexes with Carbohydrazide moieties;Journal of Molecular Structure,2018

2. Modified macroporous adsorption resin (lx1180) used to adsorb flavonoid;Pigment & Resin Technology,2013

3. Synthesis and characterization of molecularly imprinted nanoparticle polymers for selective separation of anthracene;Journal of Dispersion Science and Technology,2016

4. The copolimeryzation synthesis and swelling capacity of cellulose-poly superabsorbent (acrylic acid-co-acrylamide) based on rice straw;IOP Conf,2017

5. An overview of rhenium effect in single-crystal superalloys;Rare Metals,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3