Physico-chemical and mechanical properties of novel electrospun polyurethane composite with enhanced blood compatibility

Author:

Mani Mohan Prasath,Jaganathan Saravana Kumar

Abstract

Purpose This study aims to fabricate an electrospun scaffold by combining radish (Ra) and cerium oxide (CeO2) into a polyurethane (PU) matrix through electrospinning and investigate its feasibility for cardiac applications. Design/methodology/approach Physicochemical properties were analysed through various characterization techniques such as scanning electron microscopy (SEM), Fourier transforms infrared transforms analysis (FTIR), contact angle measurements, thermal analysis, atomic force microscopy (AFM) and mechanical testing. Further, blood compatibility assessments were carried out through activated partial thromboplastin time (APTT) and prothrombin time (PT) and hemolysis assay to evaluate the anticoagulant nature. Findings PU/Ra and PU/Ra/CeO2 exhibited a smaller fibre diameter than PU. Ra and CeO2 were intercalated in the polyurethane matrix which was evidenced in the infrared analysis by hydrogen bond formation. PU/Ra composite exhibited hydrophilic nature whereas PU/Ra/CeO2 composite turned hydrophobic. Surface measurements depicted the lowered surface roughness for the PU/Ra and PU/Ra/CeO2 compared to the pristine PU. PU/Ra and PU/Ra/CeO2 displayed enhanced degradation rates and improved mechanical strength than the pristine PU. The blood compatibility assay showed that the PU/Ra and PU/Ra/CeO2 had delayed blood coagulation times and rendered less toxicity against red blood cells (RBC’s) than PU. Originality/value This is the first report on the use of radish/cerium oxide in cardiac applications. The developed composite (PU/Ra and PU/Ra/CeO2) with enhanced mechanical and anticoagulant nature will serve as an indisputable candidate for cardiac tissue regeneration.

Publisher

Emerald

Subject

Materials Chemistry,Surfaces, Coatings and Films

Reference37 articles.

1. Antiviral functional foods and exercise lifestyle prevention of coronavirus;Nutrients,2020

2. Scaffolding in tissue engineering: general approaches and tissue-specific considerations;European Spine Journal,2008

3. Chew, H.C. (2019), “Enhanced recovery of donor hearts”, Doctoral dissertation, Victor Chang Cardiac Research Institute.

4. Polymeric scaffolds in tissue engineering application: a review;International Journal of Polymer Science,2011

5. Macrophage activities in myocardial infarction and heart failure;Cardiol Res Pract,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3