Bio-inspired iron metal–carbon black based nano-electrocatalyst for the oxygen reduction reaction

Author:

Seyyedi Behnam

Abstract

Purpose The purpose of this paper is to introduce bio-inspired FeN4-S-C black nano-electrocatalyst for the oxygen reduction reaction (ORR) in an alkaline medium. The FeN4-S-C derived without pyrolysis of precursors in high temperature is recognized as a new electrocatalyst for the ORR in an alkaline electrolyte. For the proper design of bio-inspired nano-electrocatalyst for the ORR performance, chlorinated iron (II) phthalocyanine nanoparticles were used as templates for achieving the active sites in aqueous KOH by rotating disk electrode methods. The most active FeN4-S-C catalyst exhibited a remarkable ORR activity in the alkaline medium. The objectives of this paper are to investigate the possibility of nanoscale particles size (Ëœ5nm) of electrocatalyst, to achieve four-electron transfer mechanism and to exhibit much superior catalytic stability in measurements. This paper will shed light on bio-inspired FeN4-S-C materials for the ORR catalysis in alkaline fuel cells. Design/methodology/approach The paper presents a new bio-inspired nano-electrocatalyst for the ORR, which has activity nearby platinum/carbon electrocatalyst. Chlorinated iron phthalocyanine nanoparticles have been used as FeN4 template, which is the key point for the ORR. Bio-inspired nano-electrocatalyst has been fabricated using chlorinated iron phthalocyanine, sodium sulphide and carbon black. Findings The particles’ size was 5 nm and electron transfer number was 4. Research limitations/implications The catalyst that is used in this method should be weighed carefully. In addition, the solvent should be a saturated solution of NaCl in water. Practical implications The method provides a simple and practical solution to improving the synthesis of iron-based catalyst for ORR. Originality/value The method for the synthesis of bio-inspired electrocatalyst was novel and can find numerous applications in industries, especially as ORR non-precious metal catalyst.

Publisher

Emerald

Subject

Materials Chemistry,Surfaces, Coatings and Films

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3