Impact of some mineral-based nanoparticles versus carbon nanoallotropes on properties of liquid crystal hydroxypropyl cellulose nanocomposite films

Author:

Basta Altaf H.,Lotfy Vivian F.,Salem Aya M.

Abstract

Purpose This study aims to motivate the application of some low-cost minerals in synthesizing nanoparticles as effective additives on the performance of liquid crystal (LC) hydroxypropyl cellulose (HPC) nanocomposite film, in comparison with carbon nanoallotrope. Design/methodology/approach Metallic nanoparticles of vanadium oxide, montmorillonite (MMT) and bentonite were synthesized and characterized by different techniques (Transmission electron microscopy [TEM], X-ray diffraction [XRD] and Fourier transform infrared [FTIR]). While the XRD, FTIR, non-isothermal analysis thermogravimetric analysis, mechanical analysis, scanning electron microscope and polarizing microscope were techniques used to evaluate the key role of metallic nanoparticles on the performance of HPC-nanocomposite film. Findings The formation of nanoparticles was evidenced from TEM. The XRD and FTIR measurements of nanocomposite films revealed that incorporating the mineral nanoparticles led to enhance the HPCs crystallinity from 14% to 45%, without chemical change of HPC structure. It is interesting to note that these minerals provide higher improvement in crystallinity than carbon nanomaterials (28%). Moreover, the MMT provided film with superior thermal stability and mechanical properties than pure HPC and HPC containing carbon nanoparticles, where it increased the Ea from 583.6 kJ/mol to 669.3 kJ/mol, tensile strength from 2.25 MPa to 2.8 MPa, Young’s modulus from 119 MPa to 124 MPa. As well as it had a synergistic effect on the LC formation and the birefringence texture of the nanocomposites (chiral nematic). Research limitations/implications Hydroxylpropyl cellulose-nanocomposite films were prepared by dissolving the HPC powder in water to prepare 50% concentration, (free or with incorporating 5% synthesized nanoparticles). To obtain films with uniform thickness, the prepared solutions were evenly spread on a glass plate via an applicator, by adjusting the thickness to 0.2 mm, then air dried. Practical implications These minerals provide higher improvement in crystallinity than carbon nanomaterials (28%), moreover, the MMT and bentonite provided films with superior thermal stability than pure HPC and HPC containing carbon nanoparticles. The mineral nanoparticles (especially MMT nanoclays) had a synergistic effect on LC formation and the birefringence texture of the nanocomposites (chiral nematic). Social implications This study presents the route to enhance the utilization of claystone available in El-Fayoum Province as the precursor for nanoparticles and production high performance LC nanocomposites. Originality/value This study presents the route for the valorization of low-cost mineral-based nanoparticles in enhancing the properties of HPC-film (crystallinity, thermal stability, mechanical strength), in comparison with carbon-based nanoparticles. Moreover, these nanoparticles provided more ordered mesophases and, consequently, good synergetic effect on LCs formation and the birefringence texture of the HPC-films.

Publisher

Emerald

Subject

Materials Chemistry,Surfaces, Coatings and Films

Reference54 articles.

1. Activation of Jordanian bentonite by hydrochloric acid and its potential for olive mill wastewater enhanced treatment;Journal of Chemistry,2018

2. Functional inorganic nanofillers for transparent polymers;Chemical Society Reviews,2007

3. Chemistry, structures, and advanced applications of nanocomposites from biorenewable resources;Chemical Reviews,2020

4. The role of chitosan in improving the ageing resistance of rosin;Restaurator,2003

5. Performance assessment of deashed and dewaxed rice straw on improving the quality of RS-based composites;RSC Adv,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3