Investigation of deinking efficiencies of trigromi laserjet printed papers depending on the number of recycling

Author:

Yılmaz Ufuk

Abstract

Purpose This study aims to determine the ink removal efficiency of papers with different recycling numbers and to examine some electrophotographic printing properties. Design/methodology/approach The base papers prepared according to the INGEDE 11p standard are subjected to six recycling stages (RS) under equal conditions. The physical-optical properties of the papers obtained at the end of each RS are measured and CMYK (cyan, magenta, yellow, key) color measurement scales are printed on each paper with electrophotographic printing. Color measurements of the printed papers are measured using the X-Rite eXact spectrophotometer, adhering to the ISO 13655:2017 standard. According to the measurement results of the optical properties, the ink removal efficiency of each recycling step is determined as a percentage (%) using some formulas. Findings As general, according to DEMLab and IERIC data, it is determined that the ink removal efficiency increased as the recycling repetition increased. In DEMf factor values, the highest deinking efficiency is obtained after the fourth RS. There is no significant difference between the printing properties of the samples. Originality/value It has been a matter of curiosity that papers lose their properties after how many RS. Many studies have been carried out on this subject and it has been presented by experimental methods that the printability properties of papers increase or decrease after which RS. This study can be a pioneer for future studies.

Publisher

Emerald

Subject

Materials Chemistry,Surfaces, Coatings and Films

Reference35 articles.

1. Atik, C. (1999), “The effect of recycling on cellulose fibers”, Ph.D. Thesis, Forestry Engineering, Istanbul University, Istanbul.

2. The use of deinking rate and cleaning rate: to evaluate deinking plant performance;Appita: Technology, Innovation, Manufacturing, Environment,2004

3. Physicochemical colourants effects on polymeric composites printing toner;Pigment & Resin Technology,2014

4. Potential benefıts of recovered paper sortıng by advanced technology;Cellulose Chem Technol,2010

5. The Effects of Paper Recycling and its Environmental Impact

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3