Corrosion of Al-Li alloy melt on oxide refractories

Author:

Han Wan,Hu Xiaojun

Abstract

Purpose When smelting Al-Li alloy, the material inevitably comes into contact with various oxide-refractories. These refractories are subjected to varying degrees of melt-corrosion at high temperatures. The purpose of this study is to find stable oxide refractories at casting temperature. Design/methodology/approach Four materials were selected for evaluation, and their corrosion by the Al-Li alloy at casting temperature and different holding times was measured. Subsequently, scanning electron microscopy and energy-dispersive spectroscopy were used to study the interfaces. Stable refractory materials were selected by comparing the thicknesses of the reaction layers. Findings The thickness of the Al-Li/ZrO2 reaction layer varies linearly with the square root of the holding duration. Therefore, the growth of the reaction layer is controlled by diffusion. The reaction layer of Al-Li/Al2O3 is thinner, and its growth is also controlled by diffusion. However, there were no obvious reaction layers between the Al-Li alloy and MgO or Y2O3. By comparing these reaction-layer thicknesses, the order of stability was found to be ZrO2 < Al2O3 < MgO and Y2O3. Originality/value These results provide a scientific basis for the optimal selection of refractory materials for Al-Li alloy smelting.

Publisher

Emerald

Subject

General Materials Science,General Chemical Engineering

Reference24 articles.

1. Melting and casting of lithium containing aluminium alloys;International Journal of Cast Metals Research,2015

2. The solubility of hydrogen in liquid binary Al-Li alloys;Metallurgical Transactions B,1988

3. Interface phenomena in the Y2O3/(Al-Cu) system;Materials Science and Engineering: A,2006

4. Y2O3/(Cu-Me) systems (Me = Al, Ti): interface reactions and wetting;Journal of Materials Science,2006

5. The behavior of ZrO2 in contact with molten iron at high temperatures;Refractories and Industrial Ceramics,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3