Abstract
PurposeThe existing consensus reaching mechanisms ignore the influence of social triangle structure on the decision-makers’ (DMs') weights, and the consensus reaching process (CRP) fails to fully reflect the DMs' subjectivity and can be time consuming and costly. To solve these issues, a novel CRP for multi-criteria group decision-making (MCGDM) problems with intuitionistic grey linguistic numbers (IGLNs) is proposed in this paper.Design/methodology/approachFirst, a weight calculation method is proposed by analysing the triangle structure of DMs' social network and scale of adjacent nodes. Then, a consensus degree index based on three-level polygon area is defined and applied to identify the inconsistent DMs. Finally, the feedback mechanism based on particle swarm optimisation (PSO) algorithm under grey linguistic environment is developed, where subjective trust relationships in social network is utilised to determine the adjustment coefficient.FindingsThe advantages of the proposed method are highlighted by two practical applications of the evaluation of tunnel construction method and the selection of a hotel for the centralised isolation. Comparision analysis and numerical simulation are performed to reveal the effectiveness and applicability of the method.Practical implicationsThe proposed model can not only reflect the effect of triangle structure in social network on DMs' weights, but also reduce the time and cost of decision-making.Originality/valueThe main contribution of this paper is to propose a new MCGDM model based on intuitionistic grey linguistic numbers, which can handle the problem of inconsistency of information more effectively.
Subject
Applied Mathematics,General Computer Science,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献