The hybrid intelligent systems design using grey systems theory

Author:

Emil Scarlat,Mărăcine Virginia

Abstract

Purpose – The purpose of this paper is to discuss how tacit and explicit knowledge determine grey knowledge and how these are stimulated through interactions within networks, forming the grey hybrid intelligent systems (HISs). The feedback processes and mechanisms between internal and external knowledge determine the apparition of grey knowledge into an intelligent system (IS). The extension of ISs is determined by the ubiquity of the internet but, in our framework, the grey knowledge flows assure the viability and effectiveness of these systems. Design/methodology/approach – Some characteristics of the Hybrid Intelligent Knowledge Systems are put forward along with a series of models of hybrid computational intelligence architectures. More, relevant examples from the literature related to the hybrid systems architectures are presented, underlying their main advantages and disadvantages. Findings – Due to the lack of a common framework it remains often difficult to compare the various HISs conceptually and evaluate their performance comparatively. Different applications in different areas are needed for establishing the best combinations between models that are designed using grey, fuzzy, neural network, genetic, evolutionist and other methods. But all these systems are knowledge dependent, the main flow that is used in all parts of every kind of system being the knowledge. Grey knowledge is an important part of the real systems and the study of its proprieties using the methods and techniques of grey system theory remains an important direction of the researches. Originality/value – The paper discusses the differences among the three types of knowledge and how they and the grey systems theory can be used in different hybrid architectures.

Publisher

Emerald

Reference53 articles.

1. Alavarao, C.R. (2008), Fuzzy Logic and Neural Networks , New Age International Publishers, New Delhi.

2. Bradea, I. , Delcea C. and Paun, R. (2014a), “Agile management of the correlated risks”, Proceedings of 24th IBIMA Conference, Milano, pp. 1818-1823.

3. Bradea, I. , Delcea C. and Paun, R. (2014b), “Managing and controlling the KRIs in hospitals”, Proceedings of 24th IBIMA Conference, Milano, pp. 1824-1830.

4. Collins, H. (2010), Tacit and Explicit Knowledge , The University of Chicago Press, London.

5. Corchado, E. , Wu, X. , Oja, E. and Baruque, A.H.B. (Eds) (2009), “Hybrid artificial intelligence systems”, 4th International Conference, HAIS 2009 Salamanca, 10-12 June , Springer, Berlin Heidelberg and New York, NY.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3