Author:
Summa Serena,Mircoli Alex,Potena Domenico,Ulpiani Giulia,Diamantini Claudia,Di Perna Costanzo
Abstract
Purpose
Nearly 75% of EU buildings are not energy-efficient enough to meet the international climate goals, which triggers the need to develop sustainable construction techniques with high degree of resilience against climate change. In this context, a promising construction technique is represented by ventilated façades (VFs). This paper aims to propose three different VFs and the authors define a novel machine learning-based approach to evaluate and predict their energy performance under different boundary conditions, without the need for expensive on-site experimentations
Design/methodology/approach
The approach is based on the use of machine learning algorithms for the evaluation of different VF configurations and allows for the prediction of the temperatures in the cavities and of the heat fluxes. The authors trained different regression algorithms and obtained low prediction errors, in particular for temperatures. The authors used such models to simulate the thermo-physical behavior of the VFs and determined the most energy-efficient design variant.
Findings
The authors found that regression trees allow for an accurate simulation of the thermal behavior of VFs. The authors also studied feature weights to determine the most relevant thermo-physical parameters. Finally, the authors determined the best design variant and the optimal air velocity in the cavity.
Originality/value
This study is unique in four main aspects: the thermo-dynamic analysis is performed under different thermal masses, positions of the cavity and geometries; the VFs are mated with a controlled ventilation system, used to parameterize the thermodynamic behavior under stepwise variations of the air inflow; temperatures and heat fluxes are predicted through machine learning models; the best configuration is determined through simulations, with no onerous in situ experimentations needed.
Subject
Building and Construction,Architecture,Civil and Structural Engineering,General Computer Science,Control and Systems Engineering
Reference45 articles.
1. Thermal performance of naturally ventilated cavity walls,2005
2. Modelling the thermal behaviour of a building facade using deep learning;PLoS One,2018
3. Drained and vented cavity walls: measured ventilation rates,2005
4. Ventilated facades: requirements and specifications across Europe;Procedia Environmental Sciences,2017
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献