Estimating labor resource requirements in construction projects using machine learning

Author:

Golabchi Hamidreza,Hammad Ahmed

Abstract

Purpose Existing labor estimation models typically consider only certain construction project types or specific influencing factors. These models are focused on quantifying the total labor hours required, while the utilization rate of the labor during the project is not usually accounted for. This study aims to develop a novel machine learning model to predict the time series of labor resource utilization rate at the work package level. Design/methodology/approach More than 250 construction work packages collected over a two-year period are used to identify the main contributing factors affecting labor resource requirements. Also, a novel machine learning algorithm – Recurrent Neural Network (RNN) – is adopted to develop a forecasting model that can predict the utilization of labor resources over time. Findings This paper presents a robust machine learning approach for predicting labor resources’ utilization rates in construction projects based on the identified contributing factors. The machine learning approach is found to result in a reliable time series forecasting model that uses the RNN algorithm. The proposed model indicates the capability of machine learning algorithms in facilitating the traditional challenges in construction industry. Originality/value The findings point to the suitability of state-of-the-art machine learning techniques for developing predictive models to forecast the utilization rate of labor resources in construction projects, as well as for supporting project managers by providing forecasting tool for labor estimations at the work package level before detailed activity schedules have been generated. Accordingly, the proposed approach facilitates resource allocation and enables prioritization of available resources to enhance the overall performance of projects.

Publisher

Emerald

Subject

Building and Construction,Architecture,Civil and Structural Engineering,General Computer Science,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3