Some recent developments and testing strategies relating to the passive fire protection of concrete using intumescent coatings: a review

Author:

Ghiji MattORCID,Joseph PaulORCID,Guerrieri Maurice

Abstract

PurposeIn the present article, the authors have conducted a review on some of the recent developments given in the literature pertaining to the passive protection of concrete structures using intumescent coatings. Here, the main thrust is placed on the spalling phenomenon of concrete elements when exposed to elevated temperatures and fires.Design/methodology/approachIn this context, it has been long established that prolonged thermal insult on concrete members will lead to egress of water, both physically bound as well as those present as water of hydration within the concrete matrix, in the form of steam through microchannels and associated pathways of least resistance, often resulting in the flaking of the surface of the structure. The latter process can ultimately lead to the exposure of the ferrous-based reenforcement elements, for instance, to higher temperatures, thus inducing melting. This, in turn, can result in substantial loss of strength and load-bearing capacity of the structural element that is already undergoing disintegration of its base matrix owing to heat/fire. Even though spalling of concrete structures has long been recognized as a serious problem that can often lead to catastrophic failure of infrastructures, such as buildings, bridges and tunnels, the utility of intumescent coating as a mitigation strategy is relatively new and has not been explored to its fullest possible extent. Therefore, in the latter parts of the review, the authors have endeavored to discuss the different types of intumescent coatings, their modes of actions and, in particular, their wider applicability in terms of protecting concrete elements from detrimental effects of severe or explosive spalling.FindingsGiven that spalling of concrete components is still a very serious issue that can result in loss of lives and destruction of critical infrastructures, there is an urgent need to formulate better mitigating strategies, through novel means and methods. The use of the intumescent coating in this context appears to be a promising way forward but is one that seems to be little explored so far. Therefore, a more systematic investigation is highly warranted in this area, especially, as the authors envisage a greater activity in the building and commissioning of more infrastructures worldwide incommensurate with augmented economic activities during the post-COVID recovery period.Originality/valueThe authors have conducted a review on some of the recent developments given in the literature pertaining to the passive protection of concrete structures using intumescent coatings. The authors have also included the results from some recent tests carried out at the facilities using a newly commissioned state-of-the-art furnace.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference136 articles.

1. Performance of geopolymer high strength concrete wall panels and cylinders when exposed to a hydrocarbon fire;Construction and Building Materials,2017

2. Characterization and study of char performance of glass wool and rockwool hybrid fibre reinforced intumescent coatings;ARPN Journal of Engineering and Applied Sciences,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3