Topology optimization of magnetostatic shielding using multistep evolutionary algorithms with additional searches in a restricted design space

Author:

Okamoto Yoshifumi,Tominaga Yusuke,Wakao Shinji,Sato Shuji

Abstract

Purpose – The purpose of this paper is to improve the multistep algorithm using evolutionary algorithm (EA) for the topology optimization of magnetostatic shielding, and the paper reveals the effectiveness of methodology by comparison with conventional optimization method. Furthermore, the design target is to obtain the novel shape of magnetostatic shielding. Design/methodology/approach – The EAs based on random search allow engineers to define general-purpose objects with various constraint conditions; however, many iterations are required in the FEA for the evaluation of the objective function, and it is difficult to realize a practical solution without island and void distribution. Then, the authors proposed the multistep algorithm with design space restriction, and improved the multistep algorithm in order to get better solution than the previous one. Findings – The variant model of optimized topology derived from improved multistep algorithm is defined to clarify the effectiveness of the optimized topology. The upper curvature of the inner shielding contributed to the reduction of magnetic flux density in the target domain. Research limitations/implications – Because the converged topology has many pixel element unevenness, the special smoother to remove the unevenness will play an important role for the realization of practical magnetostatic shielding. Practical implications – The optimized topology will give us useful detailed structure of magnetostatic shielding. Originality/value – First, while the conventional algorithm could not find the reasonable shape, the improved multistep optimization can capture the reasonable shape. Second, An additional search is attached to the multistep optimization procedure. It is shown that the performance of improved multistep algorithm is better than that of conventional algorithm.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Topology Optimization Applications on Engineering Structures;Truss and Frames - Recent Advances and New Perspectives;2020-03-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3