Author:
Rezek Matsumoto Thomas,Chabu Ivan
Abstract
Purpose
The purpose of this paper is to propose an analytical approach to determine the resistive torque caused by a conductive wall between the rotors of axial permanent magnet couplings. In this configuration, relative motion between the coupling rotors and the wall generates a resistive torque that is a consequence of the induced eddy currents in this barrier. Therefore, such induced resistive torque implies a reduction in the permanent magnet coupling performance, that is, its torque transmission capacity.
Design/methodology/approach
The developed resistive torque analytical formulation was based on eddy-current brakes of previous studies. To validate the proposed method, tests were conducted in a prototype and results were compared with analytical ones.
Findings
The analytical method showed a good correlation with the experiment data. Furthermore, a major degradation of the coupling capability to transmit torque was found because of the conductive wall presence, enhancing the importance of predicting such phenomenon when designing these devices.
Originality/value
A novel direct assessment of the resistive torque while in motion is presented in this paper. These measurements were of great importance to accurately compare the analytical and experimental data.
Subject
Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献