Polynomial fitting of nonlinear sources with correlating inputs

Author:

P. Aikio Janne,Rahkonen Timo,Karanko Ville

Abstract

Purpose – The purpose of this paper is to propose methods to improve the least square error polynomial fitting of multi-input nonlinear sources that suffer from strong correlating inputs. Design/methodology/approach – The polynomial fitting is improved by amplitude normalization, reducing the order of the model, utilizing Chebychev polynomials and finally perturbing the correlating controlling voltage spectra. The fitting process is estimated by the reliability figure and the condition number. Findings – It is shown in the paper that perturbing one of the controlling voltages reduces the correlation to a large extend especially in the cross-terms of the multi-input polynomials. Chebychev polynomials reduce the correlation between the higher-order spectra derived from the same input signal, but cannot break the correlation between correlating input and output voltages. Research limitations/implications – Optimal perturbations are sought in a separate optimization loop, which slows down the fitting process. This is due to the fact that each nonlinear source that suffers from the correlation needs a different perturbation. Originality/value – The perturbation, harmonic balance run and refitting of an individual nonlinear source inside a device model is new and original way to characterize and fit polynomial models.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference12 articles.

1. Anderson, E. , Bai, Z. , Bischof, C. , Blackford, S. , Demmel, J. , Dongarra, J. , Du, Croz J. , Greenbaum, A. , Hammarling, S. , McKenney, A. and Sorensen, D. (2009), LAPACK User's Guide, 3rd ed., Society for Industrial and Applied Mathematics, Philadelphia, PA, available at: www.netlib.org/lapack/lug/lapack_lug.html

2. Curtice, W.R. , Pla, J.A. , Bridges, D. , Liang, T. and Shumate, E.E. (1999), “A new dynamic electro-thermal nonlinear model for silicon RF LDMOS FET's”, 1999 IEEE MTT-S International Microwave Symposium Digest, Vol. 2, pp. 419-422.

3. Elden, L. (2007), Matrix Methods in Data Mining and Pattern Recognition, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.

4. Golub, G.H. and Van Loan, Ch F. (1996), Matrix Computations, 3rd ed., The Johns Hopkins University Press, Baltimore, MA and London.

5. Ioannis, S. , Mavridis , D. , Papamichail, M. and Papadopoulos, G. (2007), “Large and small signal distortion analysis using modified volterra series”, Journal of Analog Integrated Circuits and Signal Processing, Vol. 54 2, pp. 133-142.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3