A new electric dipole model for lightning-aircraft electrodynamics

Author:

Thirukumaran Sanmugasundaram,Ratnamahilan Polycarp Hoole Paul,Ramiah Harikrishnan,Kanesan Jeevan,Pirapaharan Kandasamy,Ratnajeevan Herbert Hoole Samuel

Abstract

Purpose – As commercial and military aircraft continue to be subject to direct lightning flashes, there is a great need to characterize correctly the electrical currents and electric potential fluctuations on an aircraft to determine alternative design approaches to minimizing the severity of the lightning-aircraft dynamics. Moreover, with the increased severity of thunderstorms due to global warming, the need arises even more to predict and quantify electrical characteristics of the lightning-aircraft electrodynamics, which is normally not measurable, using a reliable electric model of the aircraft. Such a model is advanced here. The paper aims to discuss these issues. Design/methodology/approach – The case considered in this paper is that of an aircraft directly attached to an earth flash lightning channel. The paper develops a new approach to modelling the aircraft using electric dipoles. The model has the power to represent sharp edges such as wings, tail ends and radome for any aircraft with different dimensions by using a number of different sized dipoles. The distributed transmission line model (TLM) of the lightning return stroke incorporating the distributed aircraft model is used to determine aircraft electrical elements and finally the electric current induced on the aircraft body due to lightning's interaction with the aircraft. The model is validated by the waveform method and experimental results. Findings – The dipole model proposed is a very powerful tool for minute representation of the different shapes of aircraft frame and to determine the best geometrical shape and fuselage material to reduce electric stress. This charge simulation method costs less computer storage and faster computing time. Originality/value – The paper for the first time presents a computer-based simulation tool that allows scientists and engineers to study the dynamics of voltage and current along the aircraft surface when the aircraft is attached to a cloud to ground lightning channel.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lightning Electrodynamics: Electric Power Systems and Aircraft;Lightning Engineering: Physics, Computer-based Test-bed, Protection of Ground and Airborne Systems;2022

2. Introduction to Lightning and Lightning Protection;Lightning Engineering: Physics, Computer-based Test-bed, Protection of Ground and Airborne Systems;2022

3. A software test-bed for electrical dynamics of direct cloud-to-ground and ground-to-cloud lightning flashes to aircraft: Initial results;International Journal of Applied Electromagnetics and Mechanics;2015-06-09

4. Applying a 3D Dipole Model for Lightning Electrodynamics of Low-Flying Aircraft;IETE Journal of Research;2015-01-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3