Author:
Costa Stefano,Costamagna Eugenio,Di Barba Paolo
Abstract
Purpose
A novel method for modelling permanent magnets is investigated based on numerical approximations with rational functions. This study aims to introduce the AAA algorithm and other recently developed, cutting-edge mathematical tools, which provide outstandingly fast and accurate numerical computation of potentials and vector fields.
Design/methodology/approach
First, the AAA algorithm is briefly introduced along with its main variants and other advanced mathematical tools involved in the modelling. Then, the analysis of a circular Halbach array with a one-pole pair is carried out by means of the AAA-least squares method, focusing on vector potential and flux density in the bore and validating results by means of classic finite element software. Finally, the investigation is completed by a finite difference analysis.
Findings
AAA methods for field analysis prove to be strikingly fast and accurate. Results are in excellent agreement with those provided by the finite element model, and the very good agreement with those from finite differences suggests future improvements. They are also easy programming; the MATLAB code is less than 200 lines. This indicates they can provide an effective tool for rapid analysis.
Research limitations/implications
AAA methods in magnetostatics are novel, but their extension to analogous physical problems seems straightforward. Being a meshless method, it is unlikely that local non-linearities can be considered. An aspect of particular interest, left for future research, is the capability of handling inhomogeneous domains, i.e. solving general interface problems.
Originality/value
The authors use cutting-edge mathematical tools for the modelling of complex physical objects in magnetostatics.
Reference15 articles.
1. Analysis and computation of electric and magnetic field problems”,1973
2. Vandermonde with Arnoldi;SIAM Review,2021
3. An alternative method for field analysis in inhomogeneous domains;COMPEL – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,2021
4. AAA-least squares rational approximation and solution of Laplace problems,2023
5. Inhomogeneous dielectrics: conformal mapping and finite-element models;Open Physics,2017
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Polynomial and rational convergence rates for Laplace problems on planar domains;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-08