Experimental evaluation of electric and magnetic properties of structural steel

Author:

Piccoli Phamella Reinert Tamanini,Cabral Sérgio Henrique Lopes,de Oliveira Luiz Fernando,Iaronka Odirlan,Harmel Diogo Fernando,Vieira João Paulo,Sapeli João Egídio

Abstract

Purpose This paper aims to present the proposition of a new experimental method for obtaining very crucial data of the structural steel that is used in the tank of oil filled power transformers, namely, the volumetric losses and the magnetic permeability, both in function of the density of magnetic flux. Although these data are not usually available, they are fundamental for helping the transformer designer in avoiding the occurrence of hot spots in the transformer tank. The adoption of a conventional Epstein frame has restrictions because of the incompatibility between it and the samples of the steel. Design/methodology/approach The basis of the proposition is the same as that of the Epstein frame, with significant attention paid to the additional losses in the winding that creates the magnetic flux to the samples in the core. These losses can be significant and are created by the harmonics of current along the windings and are summed to the ohmic losses. For separating these winding losses from the magnetic losses, each sample is made as being the core of a toroidal 1:1 transformer. Thus, two tests with two identic of these toroidal transformers are necessary. Findings The proposed methodology is simple, because it is very similar to the classical tests of transformers (no-load and short-circuit tests). The process of separation of losses requires only a numerical fitting of curves for adjusting the winding losses as a function of the current amplitude, and the obtained results are coherent with the expected behavior of the magnetic losses and the magnetic permeability of a structural steel. Research limitations/implications The method gives very approximate results in comparison to those obtained using the Epstein frame. The influences of the temperature and/or of the skin effect have not been evaluated. Practical implications Practical, real and thus confident data of structural steel, such as the magnetic permeability and the volumetric losses (hysteresis and Foucault), become available for the transformer designer to take actions for not only reducing the tank losses but also for avoiding the occurrence of hot spots through computer simulation. Originality/value The proposition is very new, as it allows to test steel samples with a size that does not fit to a usual Epstein frame. It takes into account the real influence of harmonic of currents in the losses along the winding of a classical Epstein frame, which has not been so far mentioned. It allows obtaining data of structural steel that had not been considered important until now.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference8 articles.

1. Experimental procedure to obtain electromagnetic properties of A-36 low carbon steel plates utilized in transformers,2016

2. General properties of power losses in soft ferromagnetic materials;IEEE Transactions on Magnetics,1988

3. Der skineffekt in bandleitern bei aufgeprägtem wechselstrom;Archiv Für Elektrotechnik,1987

4. Eddy currents and winding stray losses,2004

5. 3-D methodology for the hazard assessment on heating transformer covers,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Behavior of magnetic properties of power transformers structural steel A36 at different temperatures;2019 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC);2019-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3