Determination of maximum power point from photovoltaic system using genetic algorithm

Author:

Najdoska Angela,Cvetkovski Goga Vladimir

Abstract

Purpose The purpose of this paper is to present a novel approach to the determination of the maximum power point (MPP) in the photovoltaic system using genetic algorithm (GA). The optimization is realised on two types of photovoltaic (PV) modules: monocrystalline and polycrystalline solar modules, with the same rated peak power (400 Wp) but different electrical output data. Design/methodology/approach The proposed algorithm is a nature-based algorithm that uses genetic operators such as reproduction, crossover and mutation to realise the search through the investigated area of solutions. To determine the MPP of the PV modules, a two-diode model of a PV cell is used. Based on the input electrical data for the analysed PV module, as well as the mathematical model of the PV, the algorithm can estimate the current and voltage at the MPP for given solar irradiation and cell temperature. The analysis is made for several different irradiations, but in work, the results are presented for irradiations of: 100, 500 and 1,000 W/m2 and cell temperatures of 0, 25 and 40 °C. Findings From the presented results and performed analysis, it can be concluded that GA gives adequate results for both modules and for all working conditions. From the obtained results, it can be concluded that the optimization algorithm performs better when applied to the monocrystalline module works better especially in conditions with larger cell temperature, in comparison with the performance of the optimization algorithm applied to the polycrystalline module. On the other hand, the optimization algorithm applied to the polycrystalline module works better for the other working scenarios with smaller cell temperatures. Practical implications From the performed analysis, it can be concluded that the use GA as an optimization tool for the determination of the MPP can be successfully implemented. In addition, to improve the overall performance of the PV system, it is also necessary to forecast the weather conditions of the location where the PV system would be installed to forecast the cell temperature and the solar irradiation. This is necessary to choose the right PV module and inverter for the given location. Originality/value An optimization technique using GA as an optimization tool has been developed and successfully applied in the determination of the MPP for a PV system. The results are compared with the analytically determined values as well as with the values given by the producer, and they show good agreement.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference14 articles.

1. Is the use of renewable energy sources an answer to the problems of global warming and pollution?;Critical Reviews in Environmental Science and Technology,2011

2. Maximum power point tracking control techniques: state-of-the-art in photovoltaic applications;Renewable and Sustainable Energy Reviews,2013

3. Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics;IEEE Transactions on Electron Devices,1987

4. A solar irradiance climate data record;Bulletin of the American Meteorological Society,2016

5. A new optimization approach for maximizing the photovoltaic panel power based on genetic algorithm and Lagrenge multiplier algorithm;International Journal of Photoenergy,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of a novel hybrid soft computing model for passive components selection in multiple load Zeta converter topologies of solar PV energy system;Energy Harvesting and Systems;2023-05-18

2. Hybrid approach for parameter identification of the two-diode model of photovoltaic modules;COMPEL - The international journal for computation and mathematics in electrical and electronic engineering;2023-04-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3