Shaping inductor geometry for casting functionally graded composites

Author:

Golak Slawomir,Kordos Mirosław

Abstract

Purpose – The attractiveness of functionally graded composites lies in the possibility of a gradual spatial change of their properties such as hardness, strength and wear resistance. The purpose of this paper is to discuss the use of electromagnetic buoyancy to separate the reinforcement particles during the casting process of such a composite. Design/methodology/approach – The basic problem encountered in the process of casting composites is to obtain electromagnetic buoyancy and simultaneously to avoid a flow of the liquid metal which destroys the desired composite structure. In this paper the authors present the methodology of numerical optimization of inductor geometry in order to homogenize the electromagnetic force field distribution. Findings – The optimization method based on searching the solution subspace created by applying knowledge of the modelled process physics proved better than the universal local optimization methods. These results were probably caused by the complex shape of the criterion function hypersurface characterized by the presence of local minima. Practical implications – Due to their characteristics, functionally graded composites are of great interest to the automotive, aerospace and defense industries. In the case of metal matrix composites casting techniques (as the presented one) are the most effective methods of producing functionally graded materials. Originality/value – The paper presents the optimization of a new process of casting functionally graded composites in a low-frequency alternating electromagnetic field. The process involves problems that did not occur previously in the area of electromagnetic processing of materials. The paper proposes the use of special design of inductors to homogenize the electromagnetic force field.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference12 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of a cold crucible geometry parameters on electrical efficiency;International Journal of Applied Electromagnetics and Mechanics;2018-02-27

2. Design technique for leakage current reduction in surge arrester using gravitational search algorithm and imperialist competitive algorithm;COMPEL - The international journal for computation and mathematics in electrical and electronic engineering;2018-01-02

3. Manufacture of Locally Reinforced Composite Discs by Casting in the Alternating Electromagnetic Field;Advances in Materials Science and Engineering;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3