Author:
Bertoluzzo Manuele,Di Barba Paolo,Forzan Michele,Mognaschi Maria Evelina,Sieni Elisabetta
Abstract
Purpose
The paper aims to propose a a field-circuit method for investigating the magnetic behavior of a wireless power transfer system (WPTS) for the charge of batteries of electric vehicles. In particular, a 3D model for finite element analysis (FEA) for the field simulation of a WPTS is developed. Specifically, the effects of aluminum shield and steel layer, representing the car frame, on the self and mutual inductances are investigated. An equivalent electric circuit is then built, and the relevant lumped parameters are identified by means of the FEAs.
Design/methodology/approach
The finite element model is used to evaluate self and mutual inductances in several transmitting-receiving coil configurations and relative positions. In particular, the FEA simulates the aluminum and steel layers as shell elements in a 3D domain. The self and mutual inductance values in the aligned coil case are also used as input parameters in a circuit model to evaluate the onload current.
Findings
The use of shell elements in FEA substantially reduces the number of mesh elements needed to simulate the eddy currents in the steel and aluminum layer, so putting the ground for low-cost field analysis. Moreover, the FEA gives an accurate computation of the self and mutual inductance to be used in a circuit model, which, in turn, provides a fast update of the onload induced current.
Originality/value
To save computational time, the use of 2D shell elements to model thin conductive regions introduces a simplified FEA that could be used in the WPTS simulation. Moreover, the dynamic behavior of WPTS, i.e. the operation when the receiving coil is moving with respect to the transmitting one, is considered. Because of the lumped parameters’ dependence upon the relative positions of the two coils, the proposed method allows identifying the circuit parameters for several configurations so substantially reducing the computational burden.
Subject
Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献