Topology optimization in magnetic shield design by using density method in combination with CNN

Author:

Isshiki Rie,Kawamata Ryota,Wakao Shinji,Murata Noboru

Abstract

Purpose The density method is one of the powerful topology optimization methods of magnetic devices. The density method has the advantage that it has a high degree of freedom of shape expression which results in a high-performance design. On the other hand, it has also the drawback that unsuitable shapes for actually manufacturing are likely to be generated, e.g. checkerboards or grayscale. The purpose of this paper is to develop a method that enables topology optimization suitable for fabrication while taking advantage of the density method. Design/methodology/approach This study proposes a novel topology optimization method that combines convolutional neural network (CNN) as an effective smoothing filter with the density method and apply the method to the shield design with magnetic nonlinearity. Findings This study demonstrated some numerical examples verifying that the proposed method enables to efficiently obtain a smooth and easy-to-manufacture shield shape with high shielding ability. A network architecture suitable as smoothing filter was also exemplified. Originality/value In the field of magnetic field analysis, very few studies have verified the usefulness of smoothing by using CNN in the topology optimization of magnetic devices. This paper develops a novel topology optimization method that skillfully combines CNN with the nonlinear magnetic field analysis and also clarifies a suitable network architecture that makes it possible to obtain a target device shape that is easy to manufacture while minimizing the objective function value.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Utilization of Deep Learning for The Improvement of Design Efficiency in The Field of Electric Machinery;Journal of the Japan Society of Applied Electromagnetics and Mechanics;2022

2. Prediction of Motor Characteristic Using Deep Learning and Acceleration of Topology Optimization;Journal of the Japan Society of Applied Electromagnetics and Mechanics;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3