Participation Factor based analysis of PVSC type Multi-Input Zeta-SEPIC dc-dc converter

Author:

Thota Phanindra,Bhimavarapu Amarendra Reddy,Chintapalli V.V.S. Bhaskara Reddy

Abstract

Purpose This study aims to propose a new non-isolated Multi-Input Zeta-SEPIC (MIZS) dc–dc converter for renewable energy sources integration with different voltage levels (low-voltage source, high-voltage source). The chosen configuration of the converter is capable of performing bucking as well as boosting operations in various modes of operation. Design/methodology/approach Parameters of the selected MIZS converter are designed using the time-domain analysis. The selected converter belongs to the sixth-order family with two switches and six energy storage elements. State-space model of the converter is developed for each mode of operation, and using these individual state-space models, an average state-space model of the converter useful to carry out detailed analysis for different operating conditions is developed. Analysis related to operational stability of the converter is also carried out using Participation Factor (PaF)-based Eigen value analysis. Findings Using the PaF-based Eigen analysis, participation of the various state variables in different Eigen modes and vice versa is carried out. Performance of the converter for different parameter variations in the allowable range is determined and the same has been used to find the operational stability of the converter under different modes of operation. The selected converter has low inductor ripple currents and output voltage ripples when delivering the power to load. Originality/value Because operational stability of the converter under various operating conditions is one of the key performance indicators for selecting a particular type of converter, PaF-based Eigen value analysis has been carried out using the average state-space model developed for the selected MIZS converter. Operational stability analysis of the converter is carried out for parameter variations also. In addition, participation of the various states in each Eigen mode and vice versa have been analyzed for designed parameter values and also variation within the specified range of variations.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference35 articles.

1. On participation factors for linear systems;Automatica,2000

2. A bidirectional non isolated multi-input dc–dc converter for hybrid energy storage systems in electric vehicles;IEEE Transactions on Vehicular Technology,2015

3. A non-isolated bridge-type dc–dc converter for hybrid energy source integration;IEEE Transactions on Industry Applications,2019

4. Design and analysis of bidirectional sepic-based boost multi-port converter,2019

5. Structure for multi-input multi-output dc–dc boost converter;IET Power Electronics,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3