The pulse narrowing nonlinear transmission lines model within the local fractional calculus on the Cantor sets

Author:

Wang Kang-Jia,Wang Guo-Dong,Shi Feng

Abstract

Purpose The fractal and fractional calculus have obtained considerable attention in the electrical and electronic engineering since they can model many complex phenomena that the traditional integer-order calculus cannot. The purpose of this paper is to develop a new fractional pulse narrowing nonlinear transmission lines model within the local fractional calculus for the first time and derive a novel method, namely, the direct mapping method, to seek for the nondifferentiable (ND) exact solutions. Design/methodology/approach By defining some special functions via the Mittag–Leffler function on the Cantor sets, a novel approach, namely, the direct mapping method is derived via constructing a group of the nonlinear local fractional ordinary differential equations. With the aid of the direct mapping method, four groups of the ND exact solutions are obtained in just one step. The dynamic behaviors of the ND exact solutions on the Cantor sets are also described through the 3D graphical illustration. Findings It is found that the proposed method is simple but effective and can construct four sets of the ND exact solutions in just one step. In addition, one of the ND exact solutions becomes the exact solution of the classic pulse narrowing nonlinear transmission lines model for the special case 9 = 1, which strongly proves the correctness and effectiveness of the method. The ideas in the paper can be used to study the other fractal partial differential equations (PDEs) within the local fractional derivative (LFD) arising in electrical and electronic engineering. Originality/value The fractional pulse narrowing nonlinear transmission lines model within the LFD is proposed for the first time in this paper. The proposed method in the work can be used to study the other fractal PDEs arising in electrical and electronic engineering. The findings in this work are expected to shed a light on the study of the fractal PDEs arising in electrical and electronic engineering.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference29 articles.

1. Nonlinear transmission lines for pulse shaping in silicon;IEEE Journal of Solid-State Circuits,2005

2. On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation;Applied Mathematics and Computation,2016

3. On the test of novel constitutive relation of capacitor for electrical circuit analysis: a fractal calculus-based approach;COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,2022

4. On the noise performances of fractal-fractional electrical circuits;International Journal of Circuit Theory and Applications,2023

5. Exact and soliton solutions to nonlinear transmission line model;Nonlinear Dynamics,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3