Multistage topology optimization of induction heating apparatus in time domain electromagnetic field with magnetic nonlinearity

Author:

Masuda Hiroshi,Okamoto Yoshifumi,Wakao Shinji

Abstract

Purpose The purpose of this paper is to solve efficiently the topology optimization (TO) in time domain problem with magnetic nonlinearity requiring a large-scale finite element mesh. As an actual application model, the proposed method is applied to induction heating apparatus. Design/methodology/approach To achieve TO with efficient computation time, a multistage topology is proposed. This method can derive the optimum structure by repeatedly reducing the design domain and regenerating the finite element mesh. Findings It was clarified that the structure derived from proposed method can be similar to the structure derived from the conventional method, and that the computation time can be made more efficient by parameter tuning of the frequency and volume constraint value. In addition, as a time domain induction heating apparatus problem of an actual application model, an optimum topology considering magnetic nonlinearity was derived from the proposed method. Originality/value Whereas the entire design domain must be filled with small triangles in the conventional TO method, the proposed method requires finer mesh division of only the stepwise-reduced design domain. Therefore, the mesh scale is reduced, and there is a possibility that the computation time for TO can be shortened.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference13 articles.

1. Optimal shape design as a material distribution problem;Structural Optimization,1989

2. Performance derivative computation and optimization process;IEEE Transactions on Magnetics,1983

3. Design optimization of primary core in induction heating roll by the combination of 2D level-set method and 3D coupled magnetic-thermal FEM;IEEJ Journal of Industry Applications,2018

4. Topology optimization of induction heating model using sequential linear programming based on move-limit with adaptive relaxation;Open Physics,2017

5. On sensitivity analysis based on time domain adjoint variable method in electromagnetic field problem,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3