A volume integral approach for the modelling and design of HTS coils

Author:

Statra Yazid,Menana Hocine,Belguerras Lamia,Douine Bruno

Abstract

Purpose The purpose of this paper is to develop a rapid and realistic modelling approach for the design and characterization of high temperature superconducting (HTS) coils and windings carrying DC currents. Indeed, the strong dependence of the electromagnetic properties of such materials on the magnetic field makes the design and characterization of HTS systems a delicate operation where local quantities have to be evaluated. Design/methodology/approach A volume integral modelling approach has been developed taking into account the electric nonlinearity of the HTS material which is represented by power law. The variations of the characteristic quantities of the HTS (critical current density and power law exponent) with the magnetic flux density are also taken into account by using Kim’s law. The volume integral modelling allows to model only the active parts of the system and thus to overcome the difficulties linked to the multiscale dimensions. Findings The model has been tested in a case study in which simulation results were compared to measurements and to finite element analysis. A good agreement was found which validates the model as a rapid and efficient tool for HTS coils and windings design and modelling. Practical implications HTS coils are important elements of emerging superconducting devices which require a high level of reliability, such as generators or motors. The proposed approach is interesting to speed up the design and optimization procedures of such systems. Originality/value Advanced structures of the basic elements have been used in the volume integral modelling, which results in a considerable gain in computation time and in memory-space saving while keeping a high level of precision and realism of the modelling, which has been verified experimentally.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference16 articles.

1. High temperature superconducting axial field magnetic coupler: realization and test;Superconductor Science and Technology,2015

2. Comsol (2011), “Finit-element software package comsol multiphysic, version 4.2”, available at: www.comsol.com

3. Determination of Jc and n-value of HTS pellets by measurement and simulation of magnetic field penetration;IEEE Transactions on Applied Superconductivity,2015

4. Fabrication and testing of racetrack-shaped double-pancake coil for stator windings of induction-synchronous motor;IEEE Transactions on Applied Superconductivity,2015

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3