Abstract
PurposeThis work highlights the optimization of the consumed amount of sewing thread required to make up a pair of jeans using three different metaheuristic methods; particular swarm optimization (PSO), ant colony optimization (ACO) and genetic algorithm (GA) techniques. Indeed, using metaheuristic optimization techniques enable industrialists to reach the lowest sewing thread quantities in terms of bobbins per garments. Besides, the compared results of this research can obviously prove the impact of each input parameter on the optimization of the sewing thread consumption per pair of jeans.Design/methodology/approachTo assess objectively the sewing thread consumption, the optimized sewing conditions such as thread composition, needle size and fabric composition are investigated and discussed. Hence, a Taguchi design was elaborated to evaluate and optimize objectively the linear model consumption. Thanks to its principal characteristics and popularity, denim fabric is selected to analyze objectively the effects of studied input parameters. In addition, having workers with same skills and qualifications to repeat each time the same sewing process will involve having the same sewing thread consumption values. This can occur in some levels such as end of sewing, the number of machine failures, the kind of failure and its complexity, the competency of the mechanic and his way to repair failure, the loss of thread caused by threading and its frequency. Seam repetition due to operator lack of skill will obviously affect clothing appearance and hence quality decision. Interesting findings and significant relationship between input parameters and the amount of sewing thread consumption are established.FindingsAccording to the comparative results obtained using metaheuristic methods, the PSO and ACO technique gives the lowest values of the consumption within the best combination of input parameters. The results show the accuracy of the applied metaheuristic methods to optimize the consumed amount needed to sew a pair of jeans with a notable superiority of both PSO and ACO methods compared to experimental ones. However, compared to GA method, ACO and PSO algorithms remained the most accurate techniques allowing industrials to minimize the consumed thread used to sew jeans. They can also widely optimize and predict the consumed thread in the investigated experimental design of interest. Consequently, compared to experimental results and regarding the low error values obtained, it may be concluded that the metaheuristic methods can optimize and evaluate both studied input and output parameters accurately.Practical implicationsThis study is most useful for denim industrial applications, which makes it possible to anticipate, calculate and minimize the high consumption of sewing threads. This paper has not only practical implications for clothing appearance and quality but also for reduction in thread wastage occurring during shop floor conditions like machine running, thread breakage, repairs, etc. (Kawabata and Niwa, 1991). Unless the used sewing machine is equipped within a thread trimmer improvement in garment seam appearance cannot be achieved. By comparing and analyzing the operating activities of the regular lock stitch 301 machine with and without a thread trimmer, a difference in time processing can be grasped (Magazine JUKI Corporation, 2008). Time consumed in trimming by a lockstitch machine without a thread trimmer equals 3.1 s compared to 2.6 s by a thread trimming one. Hence, the reduction rate in the time processing equals 16.30%. This paper aimed to implement the optimal consumption (thread waste outstanding number of trials). Unless highly skilled workers are selected and well-motivated, the previous recommended changes will not be applied. The saved cost of the sewing thread reduction can be used to buy a better quality of fabric and/or thread. However, these factors are not always the same as they can vary according to customer's requirements because thread consumption is never a standard for sewn product categories such as trousers, shirts and footwear (Khedher and Jaouachi, 2015).Originality/valueUntil now, there is no work dealing with the investigation of the metaheuristic optimization of the consumed thread per pair of jeans to minimize accurately the amount of sewing thread as well as the sewing thread wastage. Even though these techniques of optimization are currently in full development due to some advantages such as generality and possible application to a large class of combinatorial and constrained assignment problems, efficiency for many problems in providing good quality approximate solutions for a large number of classical optimization problems and large-scale real applications, etc., are not applied yet to decrease sewing thread consumption. Some recent published works used statistical techniques (Taguchi, factorial, etc.), to evaluate approximate consumptions; conversely, other geometrical and mathematical approaches, considering some assumptions, used stitch geometry and remained insufficient to give the industrialists an implemented application generating the exact value of the consumed amount of sewing thread. Generally, in the clothing field 10–15% of sewing thread wastage should be added to the experimental approximate consumption value. Moreover, all investigations are focused on the approximative evaluations and theoretical modeling of sewing thread consumption as function of some input parameters. Practically, the obtained results are successfully applied and the ACO method gives the most accurate results. On the other hand, in the point of view of industrialists the applied metaheuristic methods (based on algorithms) used to decrease the amount of consumed thread remained an easy and fruitful solution that can allow them to control the number of sewing thread bobbin per garments.
Subject
Polymers and Plastics,General Business, Management and Accounting,Materials Science (miscellaneous),Business, Management and Accounting (miscellaneous)
Reference74 articles.
1. Geometrical model to calculate the consumption of sewing thread for 301 lockstitch;Journal of the Textile Institute,2014
2. Geometrical model to calculate the consumption of sewing thread for 504 overedge stitch;Journal of the Textile Institute,2018
3. A fuzzy approach to supplier selection;Journal of the Textile Institute,2001
4. Further studies on balance and thread consumption of lockstitch seams;International Journal of Clothing Science and Technology,1993
5. Comparative assessment of low stress mechanical properties and sewability of cotton and cotton banana union fabric;Asian Textile Journal,2000
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献