Deriving wisdom from virtual investing communities: an alternative strategy to stock recommendations

Author:

Kumar Rahul,Mukherjee Shubhadeep,Kumar Bipul,Bala Pradip Kumar

Abstract

Purpose Colossal information is available in cyberspace from a variety of sources such as blogs, reviews, posts and feedback. The mentioned sources have helped in improving various business processes from product development to stock market development. This paper aims to transform this wealth of information in the online medium to economic wealth. Earlier approaches to investment decision-making are dominated by the analyst's recommendations. However, their credibility has been questioned for herding behavior, conflict of interest and favoring underwriter's firms. This study assumes that members of the online crowd who have been reliable, profitable and knowledgeable in the recent past will continue to be so soon. Design/methodology/approach The authors identify credible members as experts using multi-criteria decision-making tools. In this work, an alternative actionable investment strategy is proposed and demonstrated through a mock-up. The experimental prototype is divided into two phases: expert selection and investment. Findings The created portfolio is comparable and even profitable than several major global stock indices. Practical implications This work aims to benefit individual investors, investment managers and market onlookers. Originality/value This paper takes into account factors: the accuracy and trustworthiness of the sources of stock market recommendations. Earlier work in the area has focused solely intelligence of the analyst for the stock recommendation. To the best of the authors’ knowledge, this is the first time that the combined intelligence of the virtual investment communities has been considered to make stock market recommendations.

Publisher

Emerald

Subject

Management Science and Operations Research,Strategy and Management,General Decision Sciences

Reference55 articles.

1. A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem;Information Sciences,2008

2. The wisdom of the few,2009

3. Utilizing various sparsity measures for enhancing accuracy of collaborative recommender systems based on local and global similarities;Expert Systems with Applications,2011

4. Is all that talk just noise? The information content of internet stock message boards;American Finance Association,2004

5. Investment portfolio formation via multicriteria decision aid_ a Brazilian stock market study;Journal of Modelling in Management,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3