Performance evaluation of bank branches in the atmosphere of grey uncertainty

Author:

Karimi Tooraj,Ahmadian Mohamad,Shahbazi Meisam

Abstract

Purpose As some data to evaluate the efficiency of bank branches is qualitative or uncertain, only grey numbers should be used to calculate the efficiency interval. The combination of multi-stage models and grey data can lead to a more accurate and realistic evaluation to assess the performance of bank branches. This study aims to compute the efficiency of each branch of the bank as a grey number and to group all branches into four grey efficiency areas. Design/methodology/approach The key performance indicators are identified based on the balanced scorecard and previous research studies. They are included in the two-stage grey data envelopment analysis (DEA) model. The model is run using the GAMS program. The grey efficiencies are calculated and bank branches have been grouped based on efficiency kernel number and efficiency greyness degree. Findings As policies and management approaches for branches with less uncertainty in efficiency are different from branches with more uncertainty, considering the uncertainty of efficiency values of branches may be helpful for the policy-making of managers. The grey efficiency of branches of one bank is examined in this study using the two-stage grey DEA throughout one year. The branches are grouped based on kernel and greyness value of efficiency, and the findings show that considering the uncertainty of data makes the results more consistent with the real situation. Originality/value The performance of bank branches is modeled as a two-stage grey DEA, in which the efficiency value of each branch is obtained as a grey number. The main originality of this paper is to group the bank branches based on two grey indexes named “kernel number” and “greyness degree” of grey efficiency value.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3