Predicting hotel reviews from sentiment: a multinomial classification framework

Author:

Yucel Ahmet,Caglar Musa,Ahady Dolatsara Hamidreza,George Benjamin,Dag Ali

Abstract

Purpose Machine learning algorithms are useful to effectively analyse, and therefore automatically classify online reviews. The purpose of this paper is to demonstrate a novel text-mining framework and its potential for use in the classification of unstructured hotel reviews. Design/methodology/approach Well-known data mining methods (i.e. boosted decision trees (BDT), classification and regression trees (C&RT) and random forests (RF)) in conjunction with incorporating five-fold cross-validation are used to predict the star rating of the hotel reviews. To achieve this goal, extracted features are used to create a composite variable (CV) to deploy into machine learning algorithms as the main feature (variable) during the learning process. Findings BDT outperformed the other alternatives in the exact accuracy rate (EAR) and multi-class accuracy rate (MCAR) by reaching the accuracy rates of 0.66 and 0.899, respectively. Moreover, phrases such as “clean”, “friendly”, “nice”, “perfect” and “love” are shown to be associated with four and five stars, whereas, phrases such as “horrible”, “never”, “terrible” and “worst” are shown to be associated with one and two-star hotels, as it would be the intuitive expectation. Originality/value To the best of the knowledge, there is no study in the existent literature, which synthesizes the knowledge obtained from individual features and uses them to create a single composite variable that is powerful enough to predict the star rates of the user-generated reviews. This study believes that the proposed method also provides policymakers with a unique window in the thoughts and opinions of individual users, which may be used to augment the current decision-making process.

Publisher

Emerald

Subject

Management Science and Operations Research,Strategy and Management,General Decision Sciences

Reference46 articles.

1. Assessing text mining alogrithm outcomes;Journal of Business Analytics,2020

2. Data mining for credit card fraud: a comparative study;Decision Support Systems,2011

3. A study of opinion mining and visualization of hotel reviews,2012

4. A machine learning approach to sentiment analysis in multilingual web texts;Information Retrieval,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3