Quantum eigenlogic observables applied to the study of fuzzy behaviour of Braitenberg vehicle quantum robots

Author:

Toffano Zeno,Dubois François

Abstract

Purpose The purpose of this paper is to apply the quantum “eigenlogic” formulation to behavioural analysis. Agents, represented by Braitenberg vehicles, are investigated in the context of the quantum robot paradigm. The agents are processed through quantum logical gates with fuzzy and multivalued inputs; this permits to enlarge the behavioural possibilities and the associated decisions for these simple vehicles. Design/methodology/approach In eigenlogic, the eigenvalues of the observables are the truth values and the associated eigenvectors are the logical interpretations of the propositional system. Logical observables belong to families of commuting observables for binary logic and many-valued logic. By extension, a fuzzy logic interpretation is proposed by using vectors outside the eigensystem of the logical connective observables. The fuzzy membership function is calculated by the quantum mean value (Born rule) of the logical projection operators and is associated to a quantum probability. The methodology of this paper is based on quantum measurement theory. Findings Fuzziness arises naturally when considering systems described by state vectors not in the considered logical eigensystem. These states correspond to incompatible and complementary systems outside the realm of classical logic. Considering these states allows the detection of new Braitenberg vehicle behaviours related to identified emotions; these are linked to quantum-like effects. Research limitations/implications The method does not deal at this stage with first-order logic and is limited to different families of commuting logical observables. An extension to families of logical non-commuting operators associated to predicate quantifiers could profit of the “quantum advantage” due to effects such as superposition, parallelism, non-commutativity and entanglement. This direction of research has a variety of applications, including robotics. Practical implications The goal of this research is to show the multiplicity of behaviours obtained by using fuzzy logic along with quantum logical gates in the control of simple Braitenberg vehicle agents. By changing and combining different quantum control gates, one can tune small changes in the vehicle’s behaviour and hence get specific features around the main basic robot’s emotions. Originality/value New mathematical formulation for propositional logic based on linear algebra. This methodology demonstrates the potentiality of this formalism for behavioural agent models (quantum robots).

Publisher

Emerald

Subject

Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)

Reference30 articles.

1. Fuzzy logic behavior of quantum-controlled Braitenberg vehicle agents,2018

2. Quantum robots and environments;Physical Review A,1998

3. The logic of quantum mechanics;The Annals of Mathematics, 2nd Ser,1936

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3