Abstract
PurposeAn appropriate equivalent model is the key to the effective analysis of the system and structure in which permanent magnet takes part. At present, there are several equivalent models for calculating the interacting magnetic force between permanent magnets including magnetizing current, magnetic charge and magnetic dipole–dipole model. How to choose the most appropriate and efficient model still needs further discussion.Design/methodology/approachThis paper chooses cuboid, cylindrical and spherical permanent magnets as calculating objects to investigate the detailed calculation procedures based on three equivalent models, magnetizing current, magnetic charge and magnetic dipole–dipole model. By comparing the accuracies of those models with experiment measurement, the applicability of three equivalent models for describing permanent magnets with different shapes is analyzed.FindingsSimilar calculation accuracies of the equivalent magnetizing current model and magnetic charge model are verified by comparison between simulation and experiment results. However, the magnetic dipole–dipole model can only accurately calculate for spherical magnet instead of other nonellipsoid magnets, because dipole model cannot describe the specific characteristics of magnet's shape, only sphere can be treated as the topological form of a dipole, namely a filled dot.Originality/valueThis work provides reference basis for choosing a proper model to calculate magnetic force in the design of electromechanical structures with permanent magnets. The applicability of different equivalent models describing permanent magnets with different shapes is discussed and the equivalence between the models is also analyzed.
Reference27 articles.
1. A study of scaling and geometry effects on the forces between cuboidal and cylindrical magnets using analytical force solutions;Journal of Physics D Applied Physics,2008
2. Equivalent sources methods for the numerical evaluation of magnetic force with extension to nonlinear materials;IEEE Transactions on Magnetics,2000
3. Concept of virtual air gap and its applications for force calculation;IEEE Transactions on Magnetics,2006
4. General formulation of the electromagnetic field distribution in machines and devices using fourier analysis;IEEE Transactions on Magnetics,2009
5. Redundant unbalance compensation of an active magnetic bearing system;Mechanical Systems and Signal Processing,2017
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献