Surface plasmon induced enhancement in selective laser melting processes

Author:

Vinnakota Raj K.,Genov Dentcho A.

Abstract

Purpose Selective laser melting (SLM) is an advanced rapid prototyping or additive manufacturing technology that uses high power density laser to fabricate metal/alloy components with minimal geometric constraints. The SLM process is multi-physics in nature and its study requires development of complex simulation tools. The purpose of this paper is to study – for the first time, to the best of the authors’ knowledge – the electromagnetic wave interactions and thermal processes in SLM based dense powder beds under the full-wave formalism and identify prospective metal powder bed particle distributions that can substantially improve the absorption rate, SLM volumetric deposition rate and thereby the overall build time. Design/methodology/approach We present a self-consistent thermo-optical model of the laser-matter interactions pertaining to SLM. The complex electromagnetic interactions and thermal effects in the dense metal powder beds are investigated by means of full-wave finite difference simulations. The model allows for accurate simulations of the excitation of gap, bulk and surface electromagnetic resonance modes, the energy transport across the particles, time dependent local permittivity variations under the incident laser intensity, and the thermal effects (joule heating) due to electromagnetic energy dissipation. Findings Localized gap and surface plasmon polariton resonance effects are identified as possible mechanisms toward improved absorption in small and medium size titanium powder beds. Furthermore, the observed near homogeneous temperature distributions across the metal powders indicates fast thermalization processes and allows for development of simple analytical models to describe the dynamics of the SLM process. Originality/value To the best of the authors’ knowledge, for the first time the electromagnetic interactions and thermal processes with dense powder beds pertaining to SLM processes are investigated under full-wave formalism. Explicit description is provided for important SLM process parameters such as critical laser power density, saturation temperature and time to melt. Specific guidelines are presented for improved energy efficiency and optimization of the SLM process deposition rates.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference64 articles.

1. Particle size effects on structural and optical properties of BaF 2 nanoparticles;RSC Advances,2017

2. A ray tracing method for evaluating the radiative heat transfer in porous media;International Journal of Heat and Mass Transfer,1996

3. Plasmonics for improved photovoltaic devices;Nature Materials,2010

4. Femtosecond-pulsed optical heating of gold nanoparticles;Physical Review B,2011

5. Influence of powder characteristics on processability of AlSi12 alloy fabricated by selective laser melting;Materials (Basel),2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3