Fatigue life assessment of polyamide 12 processed by selective laser sintering. Damage modelling according to fracture mechanics

Author:

Salazar Alicia,Cano Aragón Alberto Jesús,Rodríguez Jesús

Abstract

Purpose Polyamide 12 (PA12) processed by the additive manufacturing technique of selective laser sintering (SLS) is acquiring a leading role in cutting-edge technological sectors pertaining to transport and biomedical among others. In many of these applications, design requirements must ensure fatigue structural integrity. One of the characteristic features of these SLS PA12 is the layer-wise structure that may influence the mechanical response. Therefore, this paper aims to assess the fatigue life behavior of PA12, focusing on the effect of the load direction with respect to the load orientation. Design/methodology/approach With the aim of analyzing the effect of the load direction with respect to the layer wise structure, fatigue tests on plain samples of SLS PA12 were carried out with the load applied parallel and perpendicular to the layer planes. The S-N stress life curves and the fatigue limit at 106 cycles were determined at room temperature and at a stress ratio of 0.1. The fracture surfaces were inspected to evaluate the damage evolution, modeled via the fracture mechanics methodology to obtain the fracture parameters. Findings The fatigue resistance was better when the load was applied parallel than when was applied perpendicularly to the layered structure. The analysis of the postmortem specimens evidenced three regions. The inspection of the fatigue macro crack growth region revealed that crazing was the mechanism responsible of nucleation and growth of damage till a macroscopic crack was generated, as well as of the consequent crack advancement. The calculated fracture parameters computed from the application of the fracture mechanics approach were similar to those obtained from standardized fracture tests, except when the stress levels were close to the yield strength. Originality/value The fatigue knowledge of polymers, and especially of polymers processed via additive manufacturing techniques, is still scarce. Therefore, the value of this investigation is not only to obtain fatigue data that could be used for structural design with SLS PA12 materials but also to advance in the knowledge of damage evolution during the fatigue process.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3