Abstract
PurposeThe COVID-19 pandemic severely impacted tourism, and the hotel and restaurant industry was the most affected sector, which faced issues related to business uncertainty and unemployment during the crisis. The analysis of recovery time and the influence factors is significant to support policymakers in developing an effective response and mitigating the risks associated with the tourism crisis. This study aims to investigate numerous factors affecting the recovery time of the hotel and restaurant sector after the COVID-19 crisis by using survival analysis.Design/methodology/approachThis study uses the quarterly value added with the observation time from quarter 1 in 2020 to quarter 1 in 2023 to measure the recovery status. The recovery time refers to the number of quarters needed for the hotel and restaurant sector to get value added equal to or exceed the value added before the crisis. This study applies survival models, including lognormal regression, Weibull regression, and Cox regression, to investigate the effect of numerous factors on the hazard ratio of recovery time of hotels and restaurants after the COVID-19 crisis. This model accommodates all cases, including “recovered” and “not recovered yet” areas.FindingsThe empirical findings represented that the Cox regression model stratified by the area type fit the data well. The priority tourism areas had a longer recovery time than the non-priority areas, but they had a higher probability of recovery from a crisis of the same magnitude. The size of the regional gross domestic product, decentralization funds, multiplier effect, recovery time of transportation, and recovery time of the service sector had a significant impact on the probability of recovery.Originality/valueThis study contributes to the literature by examining the recovery time of the hotel and restaurant sector across Indonesian provinces after the COVID-19 crisis. Employing survival analysis, this study identifies the pivotal factors affecting the probability of recovery. Moreover, this study stands as a pioneer in investigating the multiplier effect of the regional tourism and its impact on the speed of recovery.