Deep learning based loan eligibility prediction with Social Border Collie Optimization

Author:

Infant Cyril G.L.ORCID,Ananth J.P.

Abstract

PurposeThe bank is termed as an imperative part of the marketing economy. The failure or success of an institution relies on the ability of industries to compute the credit risk. The loan eligibility prediction model utilizes analysis method that adapts past and current information of credit user to make prediction. However, precise loan prediction with risk and assessment analysis is a major challenge in loan eligibility prediction.Design/methodology/approachThis aim of the research technique is to present a new method, namely Social Border Collie Optimization (SBCO)-based deep neuro fuzzy network for loan eligibility prediction. In this method, box cox transformation is employed on input loan data to create the data apt for further processing. The transformed data utilize the wrapper-based feature selection to choose suitable features to boost the performance of loan eligibility calculation. Once the features are chosen, the naive Bayes (NB) is adapted for feature fusion. In NB training, the classifier builds probability index table with the help of input data features and groups values. Here, the testing of NB classifier is done using posterior probability ratio considering conditional probability of normalization constant with class evidence. Finally, the loan eligibility prediction is achieved by deep neuro fuzzy network, which is trained with designed SBCO. Here, the SBCO is devised by combining the social ski driver (SSD) algorithm and Border Collie Optimization (BCO) to produce the most precise result.FindingsThe analysis is achieved by accuracy, sensitivity and specificity parameter by. The designed method performs with the highest accuracy of 95%, sensitivity and specificity of 95.4 and 97.3%, when compared to the existing methods, such as fuzzy neural network (Fuzzy NN), multiple partial least squares regression model (Multi_PLS), instance-based entropy fuzzy support vector machine (IEFSVM), deep recurrent neural network (Deep RNN), whale social optimization algorithm-based deep RNN (WSOA-based Deep RNN).Originality/valueThis paper devises SBCO-based deep neuro fuzzy network for predicting loan eligibility. Here, the deep neuro fuzzy network is trained with proposed SBCO, which is devised by combining the SSD and BCO to produce most precise result for loan eligibility prediction.

Publisher

Emerald

Subject

Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)

Reference37 articles.

1. An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: the case of Turkish credit card data;Elsevier, European Journal of Operational Research,2012

2. Loan default prediction model improvement through comprehensive preprocessing and features selection,2019

3. A neural network approach for credit risk evaluation;Elsevier, The Quarterly Review of Economics and Finance,2008

4. Loan approval prediction based on machine learning approach;IOSR Journalof Computer Engineering,2016

5. A clustering approach for the-diversity model in privacy preserving data mining using fractional calculus-bacterial foraging optimization algorithm;Advances in Computer Engineering,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3