Abstract
PurposeThe bank is termed as an imperative part of the marketing economy. The failure or success of an institution relies on the ability of industries to compute the credit risk. The loan eligibility prediction model utilizes analysis method that adapts past and current information of credit user to make prediction. However, precise loan prediction with risk and assessment analysis is a major challenge in loan eligibility prediction.Design/methodology/approachThis aim of the research technique is to present a new method, namely Social Border Collie Optimization (SBCO)-based deep neuro fuzzy network for loan eligibility prediction. In this method, box cox transformation is employed on input loan data to create the data apt for further processing. The transformed data utilize the wrapper-based feature selection to choose suitable features to boost the performance of loan eligibility calculation. Once the features are chosen, the naive Bayes (NB) is adapted for feature fusion. In NB training, the classifier builds probability index table with the help of input data features and groups values. Here, the testing of NB classifier is done using posterior probability ratio considering conditional probability of normalization constant with class evidence. Finally, the loan eligibility prediction is achieved by deep neuro fuzzy network, which is trained with designed SBCO. Here, the SBCO is devised by combining the social ski driver (SSD) algorithm and Border Collie Optimization (BCO) to produce the most precise result.FindingsThe analysis is achieved by accuracy, sensitivity and specificity parameter by. The designed method performs with the highest accuracy of 95%, sensitivity and specificity of 95.4 and 97.3%, when compared to the existing methods, such as fuzzy neural network (Fuzzy NN), multiple partial least squares regression model (Multi_PLS), instance-based entropy fuzzy support vector machine (IEFSVM), deep recurrent neural network (Deep RNN), whale social optimization algorithm-based deep RNN (WSOA-based Deep RNN).Originality/valueThis paper devises SBCO-based deep neuro fuzzy network for predicting loan eligibility. Here, the deep neuro fuzzy network is trained with proposed SBCO, which is devised by combining the SSD and BCO to produce most precise result for loan eligibility prediction.
Subject
Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)
Reference37 articles.
1. An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: the case of Turkish credit card data;Elsevier, European Journal of Operational Research,2012
2. Loan default prediction model improvement through comprehensive preprocessing and features selection,2019
3. A neural network approach for credit risk evaluation;Elsevier, The Quarterly Review of Economics and Finance,2008
4. Loan approval prediction based on machine learning approach;IOSR Journalof Computer Engineering,2016
5. A clustering approach for the-diversity model in privacy preserving data mining using fractional calculus-bacterial foraging optimization algorithm;Advances in Computer Engineering,2014
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献