Abstract
PurposeThis study analyzed the interdisciplinary characteristics of Chinese research studies in library and information science (LIS) measured by knowledge elements extracted through the Lexicon-LSTM model.Design/methodology/approachEight research themes were selected for experiment, with a large-scale (N = 11,625) dataset of research papers from the China National Knowledge Infrastructure (CNKI) database constructed. And it is complemented with multiple corpora. Knowledge elements were extracted through a Lexicon-LSTM model. A subject knowledge graph is constructed to support the searching and classification of knowledge elements. An interdisciplinary-weighted average citation index space was constructed for measuring the interdisciplinary characteristics and contributions based on knowledge elements.FindingsThe empirical research shows that the Lexicon-LSTM model has superiority in the accuracy of extracting knowledge elements. In the field of LIS, the interdisciplinary diversity indicator showed an upward trend from 2011 to 2021, while the disciplinary balance and difference indicators showed a downward trend. The knowledge elements of theory and methodology could be used to detect and measure the interdisciplinary characteristics and contributions.Originality/valueThe extraction of knowledge elements facilitates the discovery of semantic information embedded in academic papers. The knowledge elements were proved feasible for measuring the interdisciplinary characteristics and exploring the changes in the time sequence, which helps for overview the state of the arts and future development trend of the interdisciplinary of research theme in LIS.
Subject
Library and Information Sciences,Information Systems
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献